
Word Embeddings

Benjamin Roth, Nina Poerner

Centrum für Informations- und Sprachverarbeitung
Ludwig-Maximilian-Universität München

beroth@cis.uni-muenchen.de

November 14, 2018

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 1 / 53

Motivation

How to represent words in a neural network?

Possible solution: indicator vectors of length |V | (vocabulary size).

w(the) =


1
0
0
...

 w(cat) =


0
1
0
...

 w(dog) =


0
0
1
...



Question: Why is this a bad idea?
I Parameter explosion (|V | might be > 1M)
I All word vectors are orthogonal to each other → no notion of word

similarity

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 3 / 53

Motivation

Learn one word vector w(i) ∈ RD (“word embedding”) per word i

Typical dimensionality: 50 ≤ D ≤ 1000� |V |
Embedding matrix: W ∈ R|V |×D

Question: Advantages of using word vectors?
I We can express similarities between words, e.g., with cosine similarity:

cos(w(i),w(j)) =
w(i)Tw(j)

‖w(i)‖2 · ‖w(j)‖2

I Since the embedding operation is a lookup operation, we only need to
update the vectors that occur in a given training batch

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 4 / 53

Motivation

Training from scratch: Initialize embedding matrix randomly and
learn it during training phase

→ words that play similar roles w.r.t. task get similar embeddings

e.g., from sentiment classification, we might expect
w(great) ≈ w(awesome)

Question: What could be a problem at test time?
I If training set is small, many words are unseen during training and

therefore have random vectors

We typically have more unlabelled than labelled data. Can we learn
embeddings from the unlabelled data?

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 5 / 53

Motivation

Distributional hypothesis: “a word is characterized by the company it
keeps”’ (Firth, 1957)

Basic idea: learn similar vectors for words that occur in similar
contexts

GloVe, Word2Vec, FastText

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 6 / 53

Questions?

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 7 / 53

Recap: Language Models

Question: What is a Language Model?
I Function to assign probability to a sequence of words.

Question: What is an n-gram language Model?
I Markov assumption: probability of word only depends on no more than

n − 1 other (previous) words:

P(w[1] . . .w[T]) =
T∏
t=1

P(w[t]|w[t−1]...w[t−n+1])

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 10 / 53

Word2Vec as a Bigram Language Model

Words in our vocabulary are represented as two sets of vectors:
I w(i) ∈ RD if they are to be predicted
I v(i) ∈ RD if they are conditioned on as context

Predict word i given previous word j :

P(i |j) = f (w(i), v(j))

Question: What is a possible function f (·) ?

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 11 / 53

A Simple Neural Network Bigram Language Model

Softmax!

P(i |j) =
exp(w(i)Tv(j))∑|V |

k=1 exp(w(k)Tv(j))

Question: Problem with training softmax?
I ⇒ Slow. Needs to compute dot products with the whole vocabulary for

every single prediction.

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 12 / 53

Questions?

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 13 / 53

Speeding up Training: Hierarchical Softmax

Context vectors v are defined like before.

Word vectors w are replaced by a binary tree:

θ(1)

θ(2) θ(3)

cat sat dog the

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 15 / 53

Hierarchical Softmax

Each tree node l has parameter vector θ(l)

Probability of going left at node l given context word j :

p(left|l , j) = σ(θ(l)Tv(j))

Probability of going right: p(right|l , j) = 1− p(left|l , j)
Probability of word i given j : product of probabilities on the path
from root to i

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 16 / 53

Example

Calculate p(sat|cat).

v(cat)

θ(1)

θ(2) θ(3)

cat sat dog the

σ(θ(1)Tv(cat))

1− σ(θ(2)Tv(cat))

p(sat|cat) = σ(θ(1)Tv(cat))[1− σ(θ(2)Tv(cat))]

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 17 / 53

Questions

Question: How many dot products do we need to calculate to get to
p(i |j)? How does this compare to the naive softmax?

I log2 |V | � |V |
Question: Show that

∑
i ′ p(i ′|j) sums to 1.

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 18 / 53

Questions?

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 19 / 53

Speeding up Training: Negative Sampling

Another trick: negative sampling (aka noise contrastive estimation)

This changes the objective function, and the resulting model is not a
language model anymore!

Idea: Instead of predicting probability distribution over whole
vocabulary, make binary decisions for a small number of words.

Positive training set: Bigrams seen in the corpus.

Negative training set: Random bigrams (not seen in the corpus).

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 21 / 53

Negative Sampling: Likelihood

Given:
I Positive training set: pos(O)
I Negative training set: neg(O)

L =
∏

(i ,j)∈pos(O)

P(pos|w(i), v(j))
∏

(i ′,j ′)∈neg(O)

P(neg|w(i ′), v(j ′))

P(pos|w, v) = σ(wTv)

P(neg|w, v) = 1− P(pos|w, v)

Question: Why not just maximize
∏

(i ,j)∈pos(O)

P(pos|w(i), v(j))?

I Trivial solution: make all w, v identical

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 22 / 53

Word2Vec with negative sampling as classification

Maximize likelihood of training data:

L(θ) =
∏
i

P(y (i)|x (i); θ)

⇔ minimize negative log likelihood:

NLL(θ) = − logL(θ) = −
∑
i

logP(y (i)|x (i); θ))

Question: What do these components stand for in Word2Vec with
negative sampling?

I x (i) Word pair, from corpus OR randomly created
I y (i) Label: 1 = word pair is from positive training set, 0 = word pair is

from negative training set
I θ Parameters v, w
I P(...) Logistic sigmoid: P(1|·) = σ(wTv), resp. P(0|·) = 1− σ(wTv).

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 23 / 53

Stochastic Gradient Descent
dσ(x)
dx

= σ(x)(1− σ(x))
dlog(x)

dx
= 1

x

L(w, v, y) = −y log
(
σ(wTv)

)
− (1− y)log

(
1− σ(wTv)

)
∂L

∂w
=

− y
1

σ(wTv)
σ(wTv)

(
1− σ(wTv)

)
v

− (1− y)
1

1− σ(wTv)
(−1)σ(wTv)

(
1− σ(wTv)

)
v

=
(
σ(wTv)− y

)
v

Same for v:

∂L

∂v
=
(
σ(wTv)− y

)
w

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 24 / 53

Stochastic Gradient Descent
One update step for one word pair i , j :

v
(i)
updated ← v(i) + η

(
y − σ(w(i)Tv(j))

)
w(j)

w
(j)
updated ← w(j) + η

(
y − σ(w(i)Tv(j))

)
v(i)

η > 0 is learning rate, y is label ∈ {0, 1}.
When do the vectors of a pair become more/less similar, and why?

I Let c = η(y − σ(v(i)Tw(j)))
I Positive (observed) word pair: y = 1=⇒c > 0.

F Hence, c · v(i) is added to w(j) and vice versa → more similar.
I Negative (random) word pair: y = 0=⇒c < 0.

F Hence, c · v(i) is subtracted from w(j) and vice versa → less similar.

w

v

What does the step size c depend on?

Difference of y and σ(w(i)Tv(j))

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 25 / 53

Speeding up Training: Negative Sampling

Constructing a good negative training set can be difficult

Often it is some random perturbation of the training data (e.g.
replacing the second word of each bigram by a random word).

The number of negative samples is often a multiple (1x to 20x) of the
number of posisive samples

Negative sets are often constructed per batch

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 26 / 53

Questions

Question: How many dot products do we need to calculate for a
given word pair? How does this compare to the naive and hierarchical
softmax?

I M + 1 ≈ log2|V | � |V |
I (for M = 20, |V | = 1M)

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 27 / 53

Questions?

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 28 / 53

Skip-gram (Word2Vec)

Idea: Learn many bigram language
models at the same time.

Given word w[t], predict words inside a
window around w[t]:

I One position before the target word:
p(w[t−1]|w[t])

I One position after the target word:
p(w[t+1]|w[t])

I Two positions before the target word:
p(w[t−2]|w[t])

I ... up to a specified window size c .

Models share all w, v parameters!

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 30 / 53

Skip-gram: Objective

Optimize the joint likelihood of the 2c language models:

p(w[t−c] . . .w[t−1]w[t+1] . . .w[t+c]|w[t]) =
∏

i∈{−c...c}
i 6=0

p(w[t+i]|w[t])

Negative Log-likelihood for whole corpus (of size N):

NLL = −
N∑
t=1

∑
i∈{−c...c}

i 6=0

log p(w[t+i]|w[t])

Using negative sampling as approximation:

≈ −
N∑
t=1

∑
i∈{−c...c}

i 6=0

log σ(wT
[t+i]v[t])−

M∑
m=1

N∑
t=1

∑
i∈{−c...c}

i 6=0

log[1− σ(wT
[t+i]v

(∗))]

v(∗) is a random context word, M is the number of negatives per positive sample

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 31 / 53

C(ontinuous) B(ag) o(f) W(ords)

Like Skipgram, but...

Predict word w[t], given the words
inside the window around w[t]:

p(w[t]|w[t−c] . . .w[t−1]w[t+1] . . .w[t+c])

∝ wT
[t]

∑
i∈−c...c

i 6=0

v[t+i]

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 33 / 53

./word2vec -train data.txt -output vec.txt

-window 5 -negative 20 -hs 0 -cbow 1

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 34 / 53

Questions?

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 35 / 53

FastText

Even if we train Word2Vec on a very large corpus, we will still
encounter unknown words at test time

Orthography can often help us:

w(remuneration) should be similar to
I w(remunerate) (same stem)
I w(iteration),w(consideration) . . . (same suffix ≈ same POS)

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 37 / 53

FastText

known word: w(i) =
1

|ngrams(i)|+ 1

[
u(i) +

∑
n∈ngrams(i)

u(n)
]

unknown word: w(i) =
1

|ngrams(i)|
∑

n∈ngrams(i)

u(n)

ngrams(remuneration) = {$re, rem, $rem, . . . ration, ation$}

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 38 / 53

FastText: Training

ngrams typically contains 3- to 6-grams

Replace w in Skipgram objective with its new definition

During backpropagation, loss gradient vector ∂J
∂w(i) is distributed to

word vector u(i) and associated n-gram vectors u(n)

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 39 / 53

Summary

Word2Vec as a bigram Language Model

Hierarchical Softmax

Negative Sampling

Skipgram: Predict words in window given word in the middle

CBOW: Predict word in the middle given words in window

fastText: N-gram embeddings generalize to unseen words

Any questions?

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 40 / 53

Initializing neural networks with pretrained embeddings

Knowledge transfer from unlabelled corpus

Design choice: Fine-tune embeddings on task or freeze them?
I Pro: Can learn/strengthen features that are important for task
I Contra: Training vocabulary is small subset of entire vocabulary → we

might overfit and mess up topology w.r.t. unseen words

pretrained = #load_some_embeddings()

frozen = Embedding(input_dim = pretrained.shape[0],

output_dim = pretrained.shape[1],

weights = [pretrained],

trainable = False)

finetunable = Embedding(input_dim = pretrained.shape[0],

output_dim = pretrained.shape[1],

weights = [pretrained],

trainable = True)

(keras)

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 43 / 53

Initializing neural networks with pretrained embeddings

(randomly initialized)

(pretrained+frozen)

(pretrained+fine-tuned)

(combination)

Table from Kim 2014: Convolutional Neural Networks for Sentence
Classification.

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 44 / 53

Resources

https://fasttext.cc/docs/en/crawl-vectors.html
I Embeddings for 157 languages, trained on big web crawls, up to 2M

words per language

https://nlp.stanford.edu/projects/glove/
I GloVe word vectors: Cooccurrence-count objective, not n-gram based

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 45 / 53

https://fasttext.cc/docs/en/crawl-vectors.html
https://nlp.stanford.edu/projects/glove/

Analogy mining

country-capital

w(Tokio) −w(Japan) + w(Poland) ≈ w(Warsaw)

opposite

w(unacceptable) −w(acceptable) + w(logical) ≈ w(illogical)

Nationality-adjective

w(Australian) −w(Australia) + w(Switzerland) ≈ w(Swiss)

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 47 / 53

Analogy mining

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 48 / 53

w(a) −w(b) + w(c) = w(?)

w(d) = argmax
w(d′)∈W

cos(w(?),w(d ′))

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 49 / 53

Cross-lingual Embedding Spaces: A very short overview

Embedding space: The space defined by the embeddings of all words
in a language

Hypothesis: Embedding spaces of different languages have similar
structures

Mikolov et al. 2013: Exploiting Similarities among Languages for Machine

Translation

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 51 / 53

Cross-lingual Embedding Spaces: A very short overview

Given:
I Monolingual embedding spaces of two languages: WL1, WL2

I Dictionary D of a few known translations

Learn function f , s.t.

∀(i ,j)∈D f (w
(i)
L1) ≈ w

(j)
L2

I e.g., linear transformation: f (wL1) = VwL1

Given word k in L1 with unknown translation:
I translate as L2 word l whose embedding w

(l)
L2 minimizes cosine distance

to f (w
(k)
L1)

Used as initialization for unsupervised Machine Translation

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 52 / 53

Summary

Applications of Word Embeddings:

Word vector initialization in neural networks

Analogy mining

Word translation mining

Any questions?

Benjamin Roth, Nina Poerner (CIS) Word Embeddings November 14, 2018 53 / 53

	Motivation
	Word2Vec
	Word2Vec as Bigram Language Model
	Hierarchical Softmax
	Negative Sampling
	Skip-gram
	CBOW
	FastText

	Applications of Word Embeddings
	Initialization
	Analogy mining
	Word translation mining

