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Heute

9:15 - 10:45: RNN Basics + CNN

11:00 - 11:45: Übung PyTorch

Statt Übungsblatt bis nächste Woche durcharbeiten:
I http://www.deeplearningbook.org/contents/rnn.html (Abschnitte 10.0

- 10.2.1, 10.7, 10.10)
I http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Nächste Woche:
I 9:15 - 10:00: “Journal Club” zu LSTM
I 10:00 - 10:45: Keras (Teil 2)
I 11:00 - 11:45: Übung Word2Vec
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Recurrent Neural Networks (RNNs)

Family of neural networks for processing sequential data x(1) . . . x(T ).

Sequences of words, characters, ...

Simplest case: for each time step t, compute representation h(t) from
current input x(t) and previous representation h(t−1).

h(t) = f (h(t−1), x(t); θ)

x(t) can be embeddings, one-hot, output of some previous layer ...

Question: By recursion, what does h(t) depend on?
I all previous inputs x(1) . . . x(t)

I the initial state h(0) (typically all-zero, but not necessarily, c.f.
encoder-decoder)

I the parameters of θ
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Parameter Sharing

Going from a time step t − 1 to t is parameterized by the same
parameters θ for all t!

h(t) = f (h(t−1), x(t); θ)

Question: Why is parameter sharing a good idea?
I Fewer parameters
I Can learn to detect features regardless of their position
I Can generalize to longer sequences than were seen in training
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RNN: Output

The output at time t is computed from the hidden representation at
time t:

o(t) = f (h(t);Vo)

Typically a linear transformation: o(t) = VT
o h

(t)

Some RNNs compute o(t) at every time step, others only at the last
time step o(T )
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RNN: Output
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Any questions so far?
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RNN: Loss Function

Loss function:
I Several time steps: L(y (1), . . . y (T ); o(1) . . . o(T ))
I Last time step: L(y ; o(T ))

Example: POS Tagging
I Output o(t) is predicted distribution over POS tags

F o(t) = P(tag =?|h(t))
F Typically: o(t) = softmax(VT

o h
(t))

I Loss at time t: negative log-likelihood (NLL) of true label y (t)

L(t) = − logP(tag = y (t)|h(t);Vo)

I Overall Loss for all time steps:

L =
T∑
t=1

L(t)
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Graphical Notation

Nodes indicate input data (x) or function outputs (otherwise).

Arrows indicate functions arguments.

Compact notation (left):
I All time steps conflated.
I � indicates “delay” of 1 time unit.

Source: Goodfellow et al.: Deep Learning.
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Graphical Notation: Including Output and Loss Function

Source: Goodfellow et al.: Deep Learning.
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Any questions so far?
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Backpropagation through time

We have calculated loss L at time step T and want to update θ with
gradient descent.

For now, imagine that we have time step-specific
“dummy”-parameters θ(t), which are identical copies of θ

→ the unrolled RNN looks like a feed-forward-neural-network!

→ we can calculate ∂L
∂θ(t)

using standard backpropagation

Question: How to calculate ∂L
∂θ ?

Add up the “dummy” gradients:

∂L
∂θ

=
T∑
t=1

∂L
∂θ(t)
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Truncated backpropagation through time

Simple idea: Stop backpropagation through time after k time steps

∂L
∂θ

=
T∑

t=T−k

∂L
∂θ(t)

Question: What are advantages and disadvantages?
I Advantage: Faster and parallelizable
I Disadvantage: If k is too small, long-range dependencies are hard to

learn
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Any questions so far?
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Vanilla RNN

h(t) = f (h(t−1), x(t); θ) = tanh(Ux(t) + Wh(h−1) + b)

θ = {W,U,b}

W: Hidden-to-hidden

U: Input-to-hidden

b: Bias term

Vanilla RNN in keras:

vanilla = SimpleRNN(units=10, use_bias = True)

vanilla.build(input_shape = (None, None, 30))

print([weight.shape for weight in vanilla.get_weights()])

[(30, 10), (10, 10), (10,)]

Question: Which shape belongs to which weight?
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Bidirectional RNNs

Conceptually: Two RNNs that run in opposite directions over the
same input

Typically, each RNN has its own set of parameters

Two sequences of hidden vectors:
→
h(1) . . .

→
h(T ),

←
h(1) . . .

←
h(T )

Typically,
→
h and

←
h are concatenated along their hidden dimension

Question: Which hidden vectors should we concatenate if our output
layer needs a single hidden vector h?

I h =
→
h(T )||

←
h(1)

I Because these are the vectors that have “read” the entire sequence

Question: Which hidden vectors should we concatenate if we need
one hidden vector per time step t?

I h(t) =
→
h(t)||

←
h(t)

I Full left context, full right context
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Multi-Layer RNNs

Conceptually: A stack of L RNNs, such that x
(t)
l = h

(t)
l−1.
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Feeding outputs back

What do we do if the input sequence x(1) . . . x(T ) is only given at
training time, but not at test time?

Examples: Machine Translation decoder, (generative) language model
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Example: Machine Translation
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Oracle signal

Give Neural Network a signal that it will not have at test time

Can be useful during training (e.g., mix oracle and predicted signal)

Can establish upper bounds of modules
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Gated RNNs: Teaser

Vanilla RNNs are not frequently used, as they tend to forget past
information quickly

Instead: LSTM, GRU, ... (next week!)

Dr. Benjamin Roth, Nina Poerner (CIS LMU München)Recurrent Neural Networks (RNNs) 21 / 21


