Recurrent Neural Networks (RNNs)

Dr. Benjamin Roth, Nina Poerner

CIS LMU München

Heute

- 9:15 10:45: RNN Basics + CNN
- 11:00 11:45: Übung PyTorch
- Statt Übungsblatt bis nächste Woche durcharbeiten:
 - http://www.deeplearningbook.org/contents/rnn.html (Abschnitte 10.0 - 10.2.1, 10.7, 10.10)
 - http://colah.github.io/posts/2015-08-Understanding-LSTMs/
- Nächste Woche:
 - 9:15 10:00: "Journal Club" zu LSTM
 - 10:00 10:45: Keras (Teil 2)
 - 11:00 11:45: Übung Word2Vec

Recurrent Neural Networks (RNNs)

- Family of neural networks for processing sequential data $\mathbf{x}^{(1)} \dots \mathbf{x}^{(T)}$.
- Sequences of words, characters, ...
- Simplest case: for each time step t, compute representation $\mathbf{h}^{(t)}$ from current input $\mathbf{x}^{(t)}$ and previous representation $\mathbf{h}^{(t-1)}$.

$$\mathbf{h}^{(t)} = f(\mathbf{h}^{(t-1)}, \mathbf{x}^{(t)}; \theta)$$

- **x**^(t) can be embeddings, one-hot, output of some previous layer ...
- **Question:** By recursion, what does **h**^(t) depend on?
 - all previous inputs $\mathbf{x}^{(1)} \dots \mathbf{x}^{(t)}$
 - the initial state h⁽⁰⁾ (typically all-zero, but not necessarily, c.f. encoder-decoder)
 - the parameters of θ

Parameter Sharing

• Going from a time step t - 1 to t is parameterized by the same parameters θ for all t!

$$\mathbf{h}^{(t)} = f(\mathbf{h}^{(t-1)}, \mathbf{x}^{(t)}; \theta)$$

- Question: Why is parameter sharing a good idea?
 - Fewer parameters
 - Can learn to detect features regardless of their position
 - Can generalize to longer sequences than were seen in training

RNN: Output

• The output at time *t* is computed from the hidden representation at time *t*:

$$\mathbf{o}^{(t)} = f(\mathbf{h}^{(t)}; \mathbf{V}_o)$$

- Typically a linear transformation: $\mathbf{o}^{(t)} = \mathbf{V}_o^T \mathbf{h}^{(t)}$
- Some RNNs compute o^(t) at every time step, others only at the last time step o^(T)

RNN: Output

Sequence2Sequence

Machine Translation, Summarization, Inflection, ...

Any questions so far?

RNN: Loss Function

- Loss function:
 - Several time steps: $\mathcal{L}(y^{(1)}, \dots, y^{(T)}; \mathbf{o}^{(1)}, \dots, \mathbf{o}^{(T)})$
 - Last time step: $\mathcal{L}(y; \mathbf{o}^{(T)})$
- Example: POS Tagging
 - Output o^(t) is predicted distribution over POS tags

$$\star \mathbf{o}^{(t)} = P(\mathsf{tag} = ?|\mathbf{h}^{(t)})$$

- ***** Typically: $\mathbf{o}^{(t)} = \operatorname{softmax}(\mathbf{V}_o^T \mathbf{h}^{(t)})$
- Loss at time t: negative log-likelihood (NLL) of true label y^(t)

$$\mathcal{L}^{(t)} = -\log P(\mathsf{tag} = y^{(t)} | \mathbf{h}^{(t)}; \mathbf{V}_o)$$

Overall Loss for all time steps:

$$\mathcal{L} = \sum_{t=1}^{T} \mathcal{L}^{(t)}$$

Graphical Notation

- Nodes indicate input data (x) or function outputs (otherwise).
- Arrows indicate functions arguments.
- Compact notation (left):
 - All time steps conflated.
 - ▶ indicates *"delay"* of 1 time unit.

Source: Goodfellow et al.: Deep Learning.

Graphical Notation: Including Output and Loss Function

Source: Goodfellow et al.: Deep Learning.

Any questions so far?

Backpropagation through time

- We have calculated loss *L* at time step *T* and want to update *θ* with gradient descent.
- For now, imagine that we have time step-specific "dummy"-parameters $\theta^{(t)}$, which are identical copies of θ
- $\bullet \rightarrow$ the unrolled RNN looks like a feed-forward-neural-network!
- \rightarrow we can calculate $\frac{\partial \mathcal{L}}{\partial \theta^{(t)}}$ using standard backpropagation
- Question: How to calculate $\frac{\partial \mathcal{L}}{\partial \theta}$?
- Add up the "dummy" gradients:

$$\frac{\partial \mathcal{L}}{\partial \theta} = \sum_{t=1}^{T} \frac{\partial \mathcal{L}}{\partial \theta^{(t)}}$$

Truncated backpropagation through time

• Simple idea: Stop backpropagation through time after k time steps

$$\frac{\partial \mathcal{L}}{\partial \theta} = \sum_{t=T-k}^{T} \frac{\partial \mathcal{L}}{\partial \theta^{(t)}}$$

• Question: What are advantages and disadvantages?

- Advantage: Faster and parallelizable
- Disadvantage: If k is too small, long-range dependencies are hard to learn

Any questions so far?

Vanilla RNN

$$\mathbf{h}^{(t)} = f(\mathbf{h}^{(t-1)}, \mathbf{x}^{(t)}; \theta) = \tanh(\mathbf{U}\mathbf{x}^{(t)} + \mathbf{W}\mathbf{h}^{(h-1)} + \mathbf{b})$$

 $\boldsymbol{\theta} = \{\mathbf{W}, \mathbf{U}, \mathbf{b}\}$

- W: Hidden-to-hidden
- U: Input-to-hidden
- b: Bias term
- Vanilla RNN in keras:

vanilla = SimpleRNN(units=10, use_bias = True)
vanilla.build(input_shape = (None, None, 30))
print([weight.shape for weight in vanilla.get_weights()])
[(30, 10), (10, 10), (10,)]

• Question: Which shape belongs to which weight?

Bidirectional RNNs

- Conceptually: Two RNNs that run in opposite directions over the same input
- Typically, each RNN has its own set of parameters
- Two sequences of hidden vectors: $\vec{\mathbf{h}^{(1)}} \dots \vec{\mathbf{h}^{(T)}}, \vec{\mathbf{h}^{(1)}} \dots \vec{\mathbf{h}^{(T)}}$
- \bullet Typically, $\stackrel{\rightarrow}{h}$ and $\stackrel{\leftarrow}{h}$ are concatenated along their hidden dimension
- **Question:** Which hidden vectors should we concatenate if our output layer needs a single hidden vector **h**?

$$\mathbf{h} = \mathbf{h}^{(\tau)} || \mathbf{h}^{(1)}$$

- Because these are the vectors that have "read" the entire sequence
- **Question:** Which hidden vectors should we concatenate if we need one hidden vector per time step *t*?

$$\mathbf{h}^{(t)} = \mathbf{h}^{(t)} || \mathbf{h}^{(t)}$$

Full left context, full right context

Multi-Layer RNNs

• Conceptually: A stack of *L* RNNs, such that $\mathbf{x}_{l}^{(t)} = \mathbf{h}_{l-1}^{(t)}$.

Feeding outputs back

- What do we do if the input sequence $\mathbf{x}^{(1)} \dots \mathbf{x}^{(T)}$ is only given at training time, but not at test time?
- Examples: Machine Translation decoder, (generative) language model

Example: Machine Translation

Oracle signal

- Give Neural Network a signal that it will not have at test time
- Can be useful during training (e.g., mix oracle and predicted signal)
- Can establish upper bounds of modules

Gated RNNs: Teaser

- Vanilla RNNs are not frequently used, as they tend to forget past information quickly
- Instead: LSTM, GRU, ... (next week!)