
Relation Classi�cation with

Parameter-restricted Models

Pro�lierungsmodul II

December 20, 2019

In this homework you will implement training and prediction with models for relation
classi�cation. To make the task more interesting, we add the side-condition that the
amount of trainable parameters of your models is limited. Models with fewer parameters
usually need fewer data to train and can have several advantages such as more robustness,
faster training or better adaptability.
You can implement any model of your choice based on the deep learning packages that

we used in the course. In any case, make sure that input and output formats correspond
to the speci�cation.

Formalities

• Work in teams of 2 or 3 students on this exercise sheet.

• Hand in your solution (zipped src folder and zipped predictions folder) no later
than Tuesday, February 4, 2019, 18:00.

• If you present your approach (Exercise 3), this will be on Wednesday, February 5,
2019.

• There is a total of 22.5 points for this exercise sheet.

Task Description

We de�ne the task of relation prediction in the following way:
Decide which relation(s) (of a �xed set of given relations) hold between two selected en-

tities in a sentence.

Some remarks:

• We consider 41 relations de�ned in the TAC KBP evaluations1. Some examples
are:

1https://tac.nist.gov/

1



� per:employee_of: Does (did) person X work for company Y?

� org:city_of_headquarters: Is (was) company/organization X based in city
Y?

� per:countries_of_residence: Does (did) person X live in country Y?

� per:title: Does (did) person X have the job title Y?

• In theory, several (or no) relations could hold between two entities. However, our
dataset is constructed in a way so that exactly one (or no) relation holds

between the selected entity pairs in the instances. Therefore, we can use a
multiclass classi�er (e.g. a softmax over all relations including a special output
no_relation).

The relation classi�er we build in this project could be used in a pipeline system after
a named entity recognizer in order to �nd all relations in a sentence. Consider the fol-
lowing example sentence:
The last remaining assets of bankrupt Russian oil company Yukos - including

its headquarters in Moscow - were sold at auction for nearly 3.9 billion U.S.

dollars Friday .

A named entity recognizer might have found the following 4 entities: Russian, Yukos,
Moscow, U.S.
We can then list all pairs of entities in the sentence (Russian-Yukos, Russian-Moscow,

...U.S.-Moscow) and solve the relation classi�cation task for each pair as de�ned above.

Data Format

The data we use 2 contains as an instance a sentence with two pre-selected entites,
and as a label the relation (or no_relation) that holds between them (according to
human annotators). Download the data from the course homepage (use the password
shared in class to extract relation_project.zip), and have a look at the training data
(relation_project/data/conll/train.conll).
The data is stored in the CONLL-format, where all tokens of a sentence are listed

line-by-line, and for each token di�erent tab-separated pre-processing information is pro-
vided (e.g., part-of-speech, named-entity-tag, dependency grammar information). The
two entities selected as relational subject (the �rst logical argument of a relation) and
relational object (the second logical argument) are merked as well. Each instance starts
with meta-information (identi�ers and training label) and is separated from the next
instance by an empty line. For your convenience, we have provided a helper method (in
relation_project/src/utils.py) that reads �les in the CONLL-format, and returns
the tokens (replacing relational arguments by dummy values). Feel free to use or extend
this method (or write your own).

2For more details about the provenance of the data see: http://anthology.aclweb.org/D/D14/

D14-1164.pdf

2



1 Exercise: Parameter-restricted relation prediction without

external resources

For this exercise, train and evaluate deep learning models, that only use information

contained in the training data (such as the tokens, or the tags in the CONLL �le). Do
not use external resources, such as pre-trained word-vectors or models, and do not-use
non-deep-learning tools such as parsers. When you are done with developing, provide
scripts in the src directory that take three arguments:
train_predict_xx.py ../data/conll/train.conll ../data/conll/dev.conll

../predictions/xx.dev ../data/conll/test.conll ../predictions/xx.test

that train your model on train.conll, and xx.test (xx.dev) are the predicted labels,
line-by-line for all instances, resulting for test.conll (dev.conll). Your script can use
development data e.g., for early stopping. In order to discourage over�tting, we do not
release the real test gold labels; just use the dev-data instead for your experimentation.
You can evalaute the resulting predictions using the provided evaluation script:

score.py ../data/gold/dev.gold ../predictions/xx.dev

1. Write a script train_predict_noext_10k.py that provides the functionality as
described above, and uses not more than 10'000 trainable parameters.

2. Write a script train_predict_noext_100k.py that provides the functionality as
described above, and uses not more than 100'000 trainable parameters.

3. Write a script train_predict_noext_1m.py that provides the functionality as de-
scribed above, and uses not more than 1'000'000 trainable parameters.

Provide the src folder with your scripts, and the predictions folder. Your points
are related to the performance (micro F1-score calculated by score.py) on dev data and
(held-out) test data:

• train_predict_noext_10k.py:

� Dev-set F1 >= 46%: +1 point

� Dev-set F1 >= 49%: +0.5 point

� Test-set F1 >= 44%: +0.5 point

� Test-set F1 >= 47%: +0.5 point

• train_predict_noext_100k.py:

� Dev-set F1 >= 51%: +1 point

� Dev-set F1 >= 54%: +0.5 point

� Test-set F1 >= 49%: +0.5 point

� Test-set F1 >= 52%: +0.5 point

• train_predict_noext_1m.py:

3



� Dev-set F1 >= 52%: +1 point

� Dev-set F1 >= 55%: +0.5 point

� Test-set F1 >= 50%: +0.5 point

� Test-set F1 >= 53%: +0.5 point

2 Exercise: Parameter-restricted relation prediction

For this exercise, you can now use pre-trained word vectors as an external resource.

• We have provided GloVe3 word vectors in the directory /big/b/beroth/glove,
including a �ltered version that contains only vectors for words in our relation
extraction data set.

• For using BERT, you can uncomment the respective lines in setup.sh in the project
folder (which uses BERT-as-a-service4).

Proceed as in the previous exercise, and limit the number of parameters accordingly.

1. Provide a script train_predict_ext_10k.py that provides the functionality as
described above, and uses not more than 10'000 trainable parameters.

2. Provide a script train_predict_ext_100k.py that provides the functionality as
described above, and uses not more than 100'000 trainable parameters.

3. Provide a script train_predict_ext_1m.py that provides the functionality as de-
scribed above, and uses not more than 1'000'000 trainable parameters.

Your points are related to the performance on dev data and (held-out) test data:

• train_predict_ext_10k.py:

� Dev-set F1 >= 54%: +1 point

� Dev-set F1 >= 57%: +0.5 point

� Test-set F1 >= 52%: +0.5 point

� Test-set F1 >= 55%: +0.5 point

• train_predict_ext_100k.py:

� Dev-set F1 >= 56%: +1 point

� Dev-set F1 >= 59%: +0.5 point

� Test-set F1 >= 54%: +0.5 point

� Test-set F1 >= 57%: +0.5 point

3https://nlp.stanford.edu/projects/glove/
4https://bert-as-service.readthedocs.io/en/latest/

4



• train_predict_ext_1m.py:

� Dev-set F1 >= 58%: +1 point

� Dev-set F1 >= 61%: +0.5 point

� Test-set F1 >= 56%: +0.5 point

� Test-set F1 >= 59%: +0.5 point

3 Exercise: Experimental relation prediction

For this exercise, the idea is to experiment with creative ideas you might have for relation
classi�cation. Performance is not the key factor.

• Provide a script train_predict_experimental.py, that deviates substantially from
the solutions you provided in the previous exercises and from the standard ap-
proaches for text classi�cation we studied in the course. (+2.5 points)

• Provide a �le experimental.txt, where you describe the main idea behind your
approach (∼ 2000 characters). (+2.5 points)

• Show the result of your experimental approach and how it compares to the other
approaches in a small presentation (∼ 10 minutes). (+2.5 points)

Remark

Each of your models must train within 60 minutes on a machine in the Antarktis CIP
Pool. For your convenience we have provided a script setup.sh that installs relevant
python packages and is tested on machines in the Antarktis CIP Pool. Do not forget to
initialize all random seeds, if you want to have stable results. It is advised to test your
code on a CIP machine to ensure that there are no problems when running the code in
grading environment (CIP Pool).

5


