Programming Projects

Benjamin Roth, Nina Poerner, Anne Beyer

Centrum für Informations- und Sprachverarbeitung Ludwig-Maximilian-Universität München beroth@cis.uni-muenchen.de

< 回 > < 回 > < 回 >

Common-sense Reasoning I

- Given: Pre-trained embedding vectors for syntactic **dependency paths** between entities. COUNTRY-annexes-COUNTRY
- Task: Predict whether one dependency path implies another dependency path
 - ▶ We have manually annotated data for training/testing (4000 instances).
 - Example:
 - ★ COUNTRY-annexes-COUNTRY ⇒ COUNTRY-takes-control-over-COUNTRY (TRUE)
 - ★ COUNTRY-annexes-COUNTRY ⇒ COUNTRY-neighbors-COUNTRY (FALSE)
- Possible design choices:
 - Concatenate vectors, then predict
 - Elementwise multiplication, then predict
 - Hidden layer before prediction
 - Regularization
 - ▶

く 何 ト く ヨ ト く ヨ ト

Common-sense Reasoning II

- Given: Tuples (Entity-Entity, dependency-path)
- Task: Learn embedding vectors for syntactic **dependency paths** between entities.
- We have data and evaluation scripts to check how good the vectors are
- ⇔ the same as word2vec!
 - Entity-Entity \sim context word
 - dependency-path \sim target word
 - (or vice versa)
- Possible design choices:
 - experiment with different negative sampling strategies, e.g.: (Russia-Crimea, COUNTRY-annexes-COUNTRY, TRUE) (Russia-Crimea, PERSON-married-to-PERSON, FALSE)

A (1) < A (2) < A (2) </p>

Antonymy Detection

- Given: Pairs of Words (from Wiktionary), which are either synonyms, antonyms, or unrelated
- Task: Use pre-trained word-vectors, and predict which pairs are synonyms, which are antonyms, or unrelated.
- Possible design choices:
 - Word2Vec, GloVe, FastText, ...
 - Concatenation, element-wise multiplication
 - hidden-layer(s)
 - qualitative analysis: confusion matrix, which type of words are easy/hard
 - ► ...

Relation Argument Extraction

- Given: Sentence, query, relation type
- Task: Does the sentence contain an answer for the query and relation?

```
"[Haig]_Query attended the US army academy at Westpoint ."
works-for \Rightarrow Answer?
school-attended \Rightarrow Answer?
born-in \Rightarrow Answer?
```

- I have code that predicts the answer in three different ways. ("Open-Type Relation Argument Extraction")
- How does a model perform that combines the methods for answer extraction?

A B M A B M

Relation Prediction

- Given: Sentence with marked entity pairs
- Task: Predict which of a fixed set of relations (or no_relation) holds between entity pair?
 - "[Haig]_Query attended the [US army]_Answer academy at Westpoint ." works-for \Rightarrow Yes/No?
 - "[Haig]_Query attended the [US army]_Answer academy at Westpoint ." school-attended \Rightarrow Yes/No?
 - "[Haig]_{Query} attended the US army academy at [Westpoint]_{Answer}."
 born-in ⇒ Yes/No?
 - ...
- Use existing noisy, automatically labelled data for training.
- Use Stanford model for prediction (PyTorch).
- Design choices:
 - Number/weight of negative instances during training
 - Learning rate
 - number of updates
 - comparison to feature-based SVM classifier

• Access to GPU necessary

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

FOFE Character-based Encodings

- FOFE (http://www.aclweb.org/anthology/P15-2081)
 - Character-based word vectors
 - Every word is represented by a weighted sum of one-hot character vectors.
 - Weights decay exponentially from start/end (1 Parameter)
- Task: Implement FOFE as a deterministic word embedding method:
 - Input: index tensor of size (batch_size x sent_length x word_length)
 - Output: Word embeddings of size (batch_size x sent_length x char_encoding)
 - Evaluate on Tagging task from ATIS/tagging sheet (or other tagging dataset, e.g. POS)
- Task variants:
 - Pytorch module or Keras Layer
 - Make Parameter learnable
 - Combine/compare with standard embedding layer

FOFE Character-based Encodings

- FOFE (http://www.aclweb.org/anthology/P15-2081)
 - Character-based word vectors
 - Every word is represented by a weighted sum of one-hot character vectors.
 - Weights decay exponentially from start/end (1 Parameter)
- Task: Implement FOFE as a deterministic word embedding method:
 - Input: index tensor of size (batch_size x sent_length x word_length)
 - Output: Word embeddings of size (batch_size x sent_length x char_encoding)
 - Evaluate on Tagging task from ATIS/tagging sheet (or other tagging dataset, e.g. POS)
- Task variants:
 - Pytorch module or Keras Layer
 - Make Parameter learnable
 - Combine/compare with standard embedding layer

Detecting insincere questions on Quora

- Problem: Trolls use Q&A forums to ask questions that are purely rhetorical. Their goal is not to get a genuine answer, but to make a point/trigger a reaction.
- Task: Binary intent classification into sincere/insincere
 - Why is Jinping the biggest serial religion murderer and rapist leader of the world after Mao? insincere
 - ► How do sex workers handle and secure their cash earnings? sincere
- https://www.kaggle.com/c/

quora-insincere-questions-classification

- Task variants:
 - Implement and test at least 2-3 architectures (e.g., CNN, LSTM, Self-Attention, etc.)
 - Implement the search over at least 4-6 hyperparameters (e.g., regularization weights, dropout probability, optimizer, learning rate, etc.). The search should be intelligent and efficient (not brute force)
 - Identify and incorporate pre-trained resources. Suggestion: pre-trained English FastText, BERT, ELMo (see e.g. towardsdatascience.com/ elmo-embeddings-in-keras-with-tensorflow-hub-7eb6f0145440)

Cross-lingual misogyny detection

- Training Data: 4000 English tweets labelled misogynous or neutal
- Test Data: 4000 Italian tweets labelled the same way
- Task 1:
 - Implement and compare at least 2-3 architectures that read a tweet and classify it as 1 (misogynous) or 0 (neutral).
 - Initialize your embedding layers with pre-trained cross-lingual embeddings, e.g. MUSE (https://github.com/facebookresearch/MUSE)
 - Train on one language, test on other.
- Task 2:
- Create a cross-lingual word-embedding space, and use it for misogyny detection
 - Least squares error linear mapping (supervised, hint: scipy.linalg.lstsq)
 - Orthogonal mapping (supervised, hint: scipy.linalg.orthogonal_procrustes)
 - VECMAP (unsupervised) https://github.com/artetxem/vecmap

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Domain Adaptation: Irony Detection

- Given: One larger data set (tweets, SemEval-2018 Task 3), one smaller data set (reddit comments, Kaggle) for irony detection.
- Task: Predict whether comments are ironic (e.g. LSTM+logistic regression). How can one domain (large data set) help prediction on another domain (smaller dataset)?
- Compare different settings:
 - Add data together, give different weights to instances from data A vs. data B.
 - Pretrain with data A, continue training with data B.
 - Train model for data A. Train model for data B, constrain it to be similar to model A (*possible stand-alone topic*).
 - Effect of Dropout/SpatialDropout1D: Make model more robust by removing words from the input during training.
 - Effect of pre-trained word embeddings.

Projects proposed by participants

- (discussed with me in advance)
- Attention for text generation from structured meaning representations (Ziad Elsayes)
- Poincare Embeddings for Food Corpus (Sameh Metias)