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Why Regression is not Enough
o Let xi,x € {0,1}
@ We want XOR function, s.t.

1 ifxy #x
0 otherwise

f(x1,x) = {

@ Can we learn this function using only logistic regression?

X2
1 f(x) =1 f(x) =0
0 f(x) =0 f(x) =1

X1
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> g(x1,x2) = 0(bp + O1x1 + b2x2)
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> g(x1,x2) = (6o + O1x1 + b2x2)
1 if g(X17X2) > 0.5

x2 > fae) = 0 otherwise
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> g(x1,x2) = (6o + O1x1 + b2x2)
1 if g(x,x) > 0.5
0 otherwise

— f(Xl,Xg) = {

X2 > f(Xl,Xz) =

1 if Og + 01x1 +62x0 >0
0 otherwise
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v

g(x1,x2) = (o + O1x1 + b2x2)
1 if g(x1,x2) > 0.5
0 otherwise

— f(Xl,Xg) = {

v

f(Xl,Xz) =

1 if Og + 01x1 +62x0 >0
0 otherwise

v

0o <0
Oo+6,>0

v
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v

g(x1,x2) = (o + O1x1 + b2x2)
1 if g(x1,x2) > 0.5
0 otherwise

— f(Xl,Xg) = {

v

f(Xl,Xz) =

1 if Og + 01x1 +62x0 >0
0 otherwise

v

0o <0
Oo+6,>0
Op+60,>0 — 60>, >0

v

o
—
v
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v

g(x1,x2) = (o + O1x1 + b2x2)
1 if g(x1,x2) > 0.5
0 otherwise

— f(Xl,Xg) = {

v

f(Xl,Xz) =

1 if Og + 01x1 +62x0 >0
0 otherwise

0 <0

0o +61 >0
Op+60>>0 = 6, >0
Oo+60;+6,<0

o
—
v vyVvYy
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> g(x1,x2) = (6o + O1x1 + b2x2)
1 if g(x,x) > 0.5
0 otherwise

— f(Xl,Xg) = {

> f(Xl, X2) =

1 if Og + 01x1 +62x0 >0
0 otherwise

0o <0

0o +61 >0

Op+60>>0 = 6, >0

0o + 01 + 0> < 0 XXX

The classes are not linearly separable!

o
—
vV vy vyTVvYyywy
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Why Regression is not Enough

blue

0 1
° b(X]_,X2) = 0(0130 4+ 0p1 - x1 + Opo - X2)
o r(Xl,Xg) = 0'(9r0 + 01 -x1+0, ~X2)
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Why Regression is not Enough

blue
R
L
X1
0 1
b(Xl,XQ) = 0(0[,0 4+ 0p1 - x1 + Opo - X2)

r(Xl,Xg) = U(9r0 + 01 -x1+0, ~X2)
g(xi.x0) =0(0z0 + 01 - b(x1,x2) + 0go - r(x1,x2))
f(x1,x2) =1I[g(x1, x2) > 0.5]
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Deep Feedforward Networks

Network: f(x; ) is a composition of two or more functions £(")
eg. f(x) = FO(FO(FD(x))))
Each (") represents one layer in the network.

Input layer — hidden layer(s) — output layer
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Deep Feedforward Networks

Network: f(x; ) is a composition of two or more functions £(")
eg. f(x) = FO(FO(FD(x))))
Each (") represents one layer in the network.

Input layer — hidden layer(s) — output layer

Input layer Hidden layer Output layer

X2

X1
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“Neural” Networks

@ Inspired by biological neurons (nerve cells)

@ Neurons are connected to each other, and receive and send electrical
pulses

e ‘“If the [input] voltage changes by a large enough amount, an
all-or-none electrochemical pulse called an action potential is
generated, which travels rapidly along the cell’'s axon, and activates
synaptic connections with other cells when it arrives.” (Wikipedia)

@ all-or-none = nonlinear

Direction message travels

Axon terminals

Nucleus

Soma
(cell body)

i Myelin
Pencrtes Sheaths
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Why we need Non-Linearities

o Fully linear multi-layer neural networks are not very expressive:
o f(x1,%2) = Up1(0r1x1 + 0r2x2) + Up0(0p1x1 + Opaxa)
— f(X17X2) = (eglerl + 9g2‘9b1)xl + (9g19r2 + 9g20b2)x2

@ Apply non-linear activation functions to neurons!
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Non-Linearities for Hidden Layers

@ Rectified Linear Unit (relu)
» relu(z) = max(0, z)

» relu has consistent gradient of 1 when a neuron is active, but zero
gradient otherwise

@ Two-layer FFN with relu can solve XOR:

f(x; W, b,v) = v relu(WTx + b)

Question: Would this FFN still solve XOR if we remove relu? Why not?
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Non-Linearities for Hidden Layers (contd.)

o(2)

tanh(z) = 20(2z) — 1

Sigmoidal functions have only a small “linear” region before they
saturate (“flatten out”) in both directions.

This means that gradients become very small for big inputs

@ Practice shows that this is okay in conjunction with log-loss
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Non-Linearities for Output Units

@ Depends on what you are trying to predict!

o If you are predicting a real number (e.g., house price), a linear
activation might work...

e For classification:
» To predict every class individually:
* Elementwise o
* — no constraints on how many classes can be true
* n independent Bernouilli distributions
» To select one out of n classes:

* softmax(z); = =2l

5, exp(z)
* — all probabilities sum to 1.
* Multinoulli (categorical) distribution.
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Deep Feedforward Networks: Training

@ Loss function defined on output layer, e.g. ||y — f(x; 8)||2
@ No loss function defined directly on hidden layers

@ Instead, training algorithm must decide how to use hidden layers most
effectively to minimize the loss on output layer
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Deep Feedforward Networks: Training

@ Loss function defined on output layer, e.g. ||y — f(x; 0)||2

@ No loss function defined directly on hidden layers

@ Instead, training algorithm must decide how to use hidden layers most
effectively to minimize the loss on output layer

@ Hidden layers can be viewed as providing a complex, more useful
feature function ¢(x) of the input (e.g., blue and red separators)

@ Conceptually similar to hand-engineered input features to linear
models, but fully data-driven
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Backpropagation

Forward propagation: Input information x propagates through
network to produce output .

Calculate cost J(€), as you would with regression.

Compute gradients w.r.t. all model parameters 6...

... how?
» We know how to compute gradients w.r.t. parameters of the output
layer (just like regression).
» How to calculate them w.r.t. parameters of the hidden layers?
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Chain Rule of Calculus

o Let x,y,z€e R.

o Let functions f, g : R — R.

° y=g(x)

° z=f(g(x))

@ Then
dz dzdy
dx  dydx
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Chain Rule of Calculus: Vector-valued Functions

o Letxe R yeR"zeR
@ Let functions f : R" - R, g : R™ — R"
°y=g(x)
o z="f(g(x)) = f(y)
@ Then
Z 82 8yJ

BX, 8yJ Ox;

@ In order to write this in vector notation, we need to define the

Jacobian matrix.
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Jacobian

@ The Jacobian is the matrix of all first-order partial derivatives of a

vector-valued function.

[Oy1 ... On]
Ox1 OXm
9 Oy2 Ays
_y | Ox OXm
ox : :
Oyn ... O
L Ox1 OXm

@ How to write in terms of gradients?

@ We can write the chain rule as:

dy T
Vyz = (2) vz
m nxm X1
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Viewing the Network as a Graph

@ Nodes are function outputs (can be scalar or vector valued)
@ Arrows are functions

o Example:

o J = v relu(WTx)

o z=WT7x;r = relu(z)
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Viewing the Network as a Graph

@ Nodes are function outputs (can be scalar or vector valued)

@ Arrows are functions

o Example:
o J = v relu(WTx)
o z=WT7x;r = relu(z)
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Forward pass

Green: Known or computed node

T
v'r

max(0, z) ~
Wwix [z @ /y\
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Backward pass

Red: Gradient of J w.r.t. node known or computed
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Backward pass

Red: Gradient of J w.r.t. node known or computed

0z \T(Or\T Oy dJ
(ow) (52)" & dy

Or\T Iy dJ 9y dJ
(82)

or dy r dy

max(0, z)

dJ
dy




Backward pass

Red: Gradient of J w.r.t. node known or computed

(& T(&)Tézﬂ
ow/ \5z) ordy

(&)Tovdl 05 d) dJ
0z/) ordy rdy dy

max(0, z) ‘ .< @
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Regularization

prediction prediction prediction

feature feature feature

e Overfitting vs. underfitting
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Regularization

prediction prediction prediction

feature feature feature

Overfitting vs. underfitting

Regularization: Any modification to a learning algorithm for reducing
its generalization error but not its training error

Build a “preference” into model for some solutions in hypothesis space

Unpreferred solutions are penalized: only chosen if they fit training
data much better than preferred solutions
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Regularization

@ Large parameters — overfitting
@ Prefer models with smaller weights

@ Popular regularizers:

» Penalize large L2 norm (= Euclidian norm) of weight vectors
» Penalize large L1 norm (= Manhattan norm) of weight vectors
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L2-Regularization

@ Add term that penalizes large L2 norm of weight vector 8

@ The amount of penalty is controlled by a parameter A

J(0) = J(8,x,y) + goTe

Benjamin Roth, Nina Poerner (CIS LMU Mii Machine Learning Basics IlI 26 / 29



L2-Regularization
@ The surface of the objective function is now a combination of the
original loss and the regularization penalty.

WZ
Minimize cost

Alwll3

)<' "

Minimize penalty Minimize cost + penalty
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Summary

o Feedforward networks: layers of (non-linear) function compositions
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Summary

Feedforward networks: layers of (non-linear) function compositions
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Non-Linearities for output units (classification): o, softmax
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parameters using chain rule
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Summary

Feedforward networks: layers of (non-linear) function compositions
Non-Linearities for hidden layers: relu, tanh, ...

Non-Linearities for output units (classification): o, softmax

Training via backpropagation: compute gradient of cost w.r.t.
parameters using chain rule

Regularization: penalize large parameter values, e.g. by adding
L2-norm of parameter vector to loss
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Outlook

@ “Manually” defining forward- and backward passes in numpy is
time-consuming

@ Deep Learning frameworks let you define forward pass as a
“computation graph” made up of simple, differentiable operations
(e.g., dot products).

@ They do the backward pass for you

@ tensorflow + keras, pytorch, theano, MXNet, CNTK, caffe, ...
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