Machine Learning Basics II

Benjamin Roth

CIS LMU München

3

(日) (周) (三) (三)

- Linear Regression
- Optimizing Mean Squared Error
- Maximum Likelihood Estimation
- Linear Regression as Maximum Likelihood (optional)

A B F A B F

• Linear Regression

• Optimizing Mean Squared Error

- Maximum Likelihood Estimation
- Linear Regression as Maximum Likelihood (optional)

()

Linear Regression: Recap

Linear function:

$$\hat{y} = \mathbf{w}^T \mathbf{x} = \sum_{j=1}^n w_j x_j$$

 Parameter vector w ∈ ℝⁿ Weight w_j decides if value of feature x_j increases or decreases prediction ŷ.

Benjamin Roth (CIS LMU München)

Linear Regression: Mean Squared Error

• Mean squared error of training (or test) data set is the sum of squared differences between the predictions and labels of all *m* instances.

• In matrix notation:

$$MSE := \frac{1}{m} ||\mathbf{\hat{y}} - \mathbf{y}||_2^2$$
$$= \frac{1}{m} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2$$

Linear Regression

• Optimizing Mean Squared Error

- Maximum Likelihood Estimation
- Linear Regression as Maximum Likelihood (optional)

.

Learning: Improving on MSE

• Gradient: Vector whose components are the n partial derivatives of f.

$$\nabla_{\mathbf{w}} f(\mathbf{w}) = \begin{bmatrix} \frac{\partial f(\mathbf{w})}{\partial w_1} \\ \frac{\partial f(\mathbf{w})}{\partial w_2} \\ \vdots \\ \frac{\partial f(\mathbf{w})}{\partial w_0} \end{bmatrix}$$

- View MSE as a function of **w**
- Minimum is where gradient is **0**.

$$\nabla_{\mathbf{w}} MSE = \mathbf{0}$$

A B < A B </p>

Learning: Improving on MSE

• View MSE as a function of w

- Minimum is where gradient $\nabla_{\mathbf{w}} MSE = \mathbf{0}$.
- Why minimum and and not maximum or saddle point?
 - Because it is a quadratic function...
 - Check convexity for 1 dimensional function: Second derivative > 0.
 - Check for vector valued function: Hessian is positive-semidefinite.

Second Derivative Test

Second derivative of Mean Squared Error for Linear model with only one feature:

$$\frac{d^2}{dw^2} \sum_{i=1}^m (x^{(i)}w - y^{(i)})^2 = \frac{d^2}{dw^2} \sum_{i=1}^m (x^{(i)2}w^2 - 2x^{(i)}w + y^{(i)2}) = 2\sum_{i=1}^m x^{(i)2} > 0$$

.∋...>

Solving for \boldsymbol{w}

• We now know that minimum is where gradient is **0**.

 $\nabla_{\mathbf{w}} MSE = \mathbf{0}$

$$\Rightarrow \nabla_{\mathbf{w}} \frac{1}{m} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 = \mathbf{0}$$

• Solve for **w**:

$$\mathbf{w} = (\mathbf{X}^{ op} \mathbf{X})^{-1} \mathbf{X}^{ op} \mathbf{y}$$

(Normal Equation)

3

- 4 週 ト - 4 三 ト - 4 三 ト

Deriving the Normal Equation

• Function to minimize:

$$||\mathbf{X}\mathbf{w} - \mathbf{y}||_{2}^{2}$$

= $(\mathbf{X}\mathbf{w} - \mathbf{y})^{T}(\mathbf{X}\mathbf{w} - \mathbf{y})$
= $\mathbf{w}^{T}\mathbf{X}^{T}\mathbf{X}\mathbf{w} - \mathbf{w}^{T}\mathbf{X}^{T}\mathbf{y} - \mathbf{y}^{T}\mathbf{X}\mathbf{w} + \mathbf{y}^{T}\mathbf{y}$
= $\mathbf{w}^{T}\mathbf{X}^{T}\mathbf{X}\mathbf{w} - 2\mathbf{w}^{T}\mathbf{X}^{T}\mathbf{y} + \mathbf{y}^{T}\mathbf{y}$

• Take the gradient¹ w.r.t. w and set equal to **0**:

$$2\mathbf{X}^{T}\mathbf{X}\mathbf{w} - 2\mathbf{X}^{T}\mathbf{y} = \mathbf{0}$$

$$\Rightarrow \mathbf{X}^{T}\mathbf{X}\mathbf{w} = \mathbf{X}^{T}\mathbf{y}$$

$$\Rightarrow (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{X}\mathbf{w} = (\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{y}$$

¹[Matrix Cookbook. Petersen and Pedersen, 2012]:

 $\nabla_{\mathbf{w}} \mathbf{w}^T \mathbf{a} = \mathbf{a}$

 $\nabla_{\mathbf{w}} \mathbf{w}^{\mathsf{T}} \mathbf{B} \mathbf{w} = 2 \mathbf{B} \mathbf{w}$ for symmetric \mathbf{B}

Linear Regression: Summary

- Model simple linear relationships between **X** and **y**
- Mean squared error is a quadratic function of the parameter vector **w**, and has a unique minimum.
- Normal equations: Find that minimum by setting the gradient to zero and solving for **w**.
- Linear algebra packages have special routines for solving least squares linear regression.

- Linear Regression
- Optimizing Mean Squared Error
- Maximum Likelihood Estimation
- Linear Regression as Maximum Likelihood (optional)

Maximum Likelihood Estimation

- Machine learning models are often more interpretable if they are stated in a probabilistic way.
- Performance measure: What is the probability of the training data given the model parameters?
- Likelihood: Probability of data as a function of model parameters
- $\bullet \Rightarrow \mathsf{Maximum} \ \mathsf{Likelihood} \ \mathsf{Estimation}$
- Many models can be formulated in a probabilistic way!

Probability of Data Set

Data:

- Set of *m* examples $\mathbf{X} = {\mathbf{x}^{(1)}, \dots \mathbf{x}^{(m)}}$
- Sometimes written as design matrix:

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}^{(1)T} \\ \vdots \\ \mathbf{x}^{(m)T} \end{bmatrix}$$

• Probability of dataset **X**, parametrized by θ :

 $p_{model}(\mathbf{X}; \boldsymbol{\theta})$

Probability of Data Set

• Probability of dataset X, parametrized by theta:

 $p_{model}(\mathbf{X}; \boldsymbol{\theta})$

- Data points are independent and identically distributed random variables (i.i.d.)
 - Assumption made by many ML models.
 - Identically distributed: Examples come from same distribution.
 - Independent: Value of one example doesn't influence other example.
 - \Rightarrow Probability of data set is product of example probabilities.

$$p_{model}(\mathbf{X}; \boldsymbol{\theta}) = \prod_{i=1}^{m} p_{model}(\mathbf{x}^{(i)}; \boldsymbol{\theta})$$

Maximum Likelihood Estimation

- Likelihood: Probability of data viewed as function of parameters $oldsymbol{ heta}$
- (Negative) Log-Likelihood (NLL):
 - Logarithm is monotonically increasing
 - ★ Maximum of function stays the same
 - * Easier to do arithmetic with (sums vs. products)
 - ► Optimization is often formulated as minimization ⇒ take negative of function.
- Maximum likelihood estimator for θ :

$$oldsymbol{ heta}_{ML} = \operatorname{argmax}_{oldsymbol{ heta}} p_{model}(\mathbf{X};oldsymbol{ heta})$$

$$= \operatorname{argmax}_{\theta} \prod_{i=1}^{m} p_{model}(\mathbf{x}^{(i)}; \theta)$$

$$= \operatorname{argmax}_{\theta} \sum_{i=1}^{m} \log p_{model}(\mathbf{x}^{(i)}; \theta)$$

Conditional Log-Likelihood

- Log-likelihood can be stated for supervised and unsupervised tasks.
- Unsupervised learning (e.g. density estimation).
 - Task: model $p_{model}(\mathbf{X}; \boldsymbol{\theta})$ (as before)
 - $\blacktriangleright \mathbf{X} = \{\mathbf{x}^{(1)}, \dots \mathbf{x}^{(m)}\}$
- Supervised learning (Predictive modelling):
 - Task: model $p_{model}(\mathbf{y}|\mathbf{X}; \boldsymbol{\theta})$
 - $\mathbf{X} = {\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}}, \quad \mathbf{y} = {y^{(1)}, \dots, y^{(m)}}$
- Maximum likelihood estimation for the supervised i.i.d. case:

$$\boldsymbol{\theta}_{ML} = \operatorname{argmax}_{\boldsymbol{\theta}} P(\mathbf{y}|\mathbf{X}; \boldsymbol{\theta})$$

$$= \operatorname{argmax}_{\boldsymbol{\theta}} \sum_{i=1}^{m} \log P(y^{(i)} | \mathbf{x}^{(i)}; \boldsymbol{\theta})$$

▲圖▶ ▲ 圖▶ ▲ 圖▶ …

- Linear Regression
- Optimizing Mean Squared Error
- Maximum Likelihood Estimation
- Linear Regression as Maximum Likelihood (optional)

- Instead of predicting one value \hat{y} for an input **x**, model probability distribution $p(y|\mathbf{x})$.
- For the same value of **x**, different values of *y* may occur (with different probability).

Gaussian Distribution

- Gaussian distribution: $N(y|\mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(y-\mu)^2}{2\sigma^2}\right]$
 - Quadratic function as negative exponent, scaled by variance
 - Normalization factor $\frac{1}{\sigma\sqrt{2\pi}}$

ヘロン 人間 とくほと くほとう

• Assume label y is distributed by a Gaussian, depending on features \mathbf{x}

$$p(y|\mathbf{x}) = N(y|\mu, \sigma^2)$$

where the mean is determined by the linear transformation

$$\mu = \boldsymbol{\theta}^{\mathsf{T}} \mathbf{x}$$

and σ is a constant.

- Gaussian distribution: $N(y|\mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(y-\mu)^2}{2\sigma^2}\right]$
 - Taking the log makes it a quadratic function!
- Conditional log-likelihood:

$$-\log P(\mathbf{y}|\mathbf{X}; \boldsymbol{\theta})$$
$$= -\sum_{i=1}^{m} \log p(y^{(i)}|\mathbf{x}^{(i)}; \boldsymbol{\theta})$$
$$= m\log\sigma + \frac{m}{2}\log(2\pi) + \sum_{i=1}^{m} \frac{(y^{(i)} - \boldsymbol{\theta}^{\mathsf{T}}\mathbf{x}^{(i)})^2}{2\sigma^2}$$
$$= \text{const} + \frac{1}{2\sigma^2} \sum_{i=1}^{m} (y^{(i)} - \boldsymbol{\theta}^{\mathsf{T}}\mathbf{x}^{(i)})^2$$

• What is optimal θ ?

• Conditional negative log-likelihood:

$$NLL(\boldsymbol{\theta}) = \text{const} + \frac{1}{2\sigma^2} \sum_{i=1}^{m} (y^{(i)} - \boldsymbol{\theta}^T \mathbf{x}^{(i)})^2$$

• Compare to previous result:

$$MSE(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^{n} (y^{(i)} - \mathbf{w}^{T} \mathbf{x}^{(i)})^{2}$$

 Minimizing NLL under these assumptions is equivalent to minimizing MSE!

• • = • • = •

Maximum Likelihood: Summary

- Many machine learning problems can be stated in a probabilistic way.
- Mean squared error linear regression can be stated as a probabilistic model that allows for Gaussian random noise around the predicted value ŷ.
- A straightforward optimization is to maximize the likelihood of the training data.
- Maximum likelihood is not Bayesian, and may give undesirable results (e.g. if there is only little training data).
- In practice, MLE and point estimates are often used to solve machine learning problems.