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@ Regression
@ Linear Regression

@ Optimizing Mean Squared Error
@ Maximum Likelihood Estimation
@ Linear Regression as Maximum Likelihood (optional)
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Linear Regression: Recap

X2

X1

@ Linear function:

n
U =—wlx = X
g=wix=3 wx
Jj=1

@ Parameter vector w € R”
Weight w; decides if value of feature x; increases or decreases
prediction y.
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Linear Regression: Mean Squared Error

@ Mean squared error of training (or test) data set is the sum of squared
differences between the predictions and labels of all m instances.

1 <L .
— o) _ (02
MSE : m;(y y¥)

@ In matrix notation:

1.
MSE := =||§ —y|l5
m

1
= —||Xw —y|[3
= [ Xw -y}
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Learning: Improving on MSE

@ Gradient: Vector whose components are the n partial derivatives of f.

rof(w)
owy

O (w)
L Ow, 4
@ View MSE as a function of w
@ Minimum is where gradient is 0.
VwMSE =0
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Learning: Improving on MSE

@ View MSE as a function of w

Linear regression example

I\'ISE(“MD)
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@ Minimum is where gradient V,, MSE = 0.
@ Why minimum and and not maximum or saddle point?

» Because it is a quadratic function...

» Check convexity for 1 dimensional function: Second derivative > 0.
» Check for vector valued function: Hessian is positive-semidefinite.
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Second Derivative Test

Linear regression example
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Second derivative of Mean Squared Error for Linear model with only one

feature:

dw2 Z(x( Tw—y )2 = dd_ Z )2W2_2X(i)W+y(i)2) —9 Zx(i)z >0
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Solving for w

@ We now know that minimum is where gradient is 0.
VuwMSE =0

1
= Vw—|[Xw —y[[5 =0
m

@ Solve for w:

w=(X"X)"1xTy

(Normal Equation)
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Deriving the Normal Equation

@ Function to minimize:
IXw — y|[5

= (Xw —y)" (Xw —y)
=w/ X"Xw-—w'XTy—y"Xw+yTy
—w' X" Xw—2w'X"y+yy
o Take the gradient® w.r.t. w and set equal to O:
2XTXw —2XTy =0

= X"Xw=XTy
= (XTX)"IXTXw = (XTX)" !XTy

![Matrix Cookbook. Petersen and Pedersen, 2012]:

Vew a=a

Vww ' Bw = 2Bw for symmetric B
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Linear Regression: Summary

@ Model simple linear relationships between X and y

@ Mean squared error is a quadratic function of the parameter vector w,
and has a unique minimum.

@ Normal equations: Find that minimum by setting the gradient to zero
and solving for w.

@ Linear algebra packages have special routines for solving least squares
linear regression.
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Maximum Likelihood Estimation

@ Machine learning models are often more interpretable if they are
stated in a probabilistic way.

@ Performance measure: What is the probability of the training data
given the model parameters?

@ Likelihood: Probability of data as a function of model parameters

@ = Maximum Likelihood Estimation

@ Many models can be formulated in a probabilistic way!
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Probability of Data Set

o Data:
> Set of m examples X = {x(!), ... x(m}
» Sometimes written as design matrix:

<O

X = :
x(m)T

@ Probability of dataset X, parametrized by 6:

pmodel(xi 0)
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Probability of Data Set

@ Probability of dataset X, parametrized by theta:

pmodel(x; 9)

@ Data points are independent and identically distributed random
variables (i.i.d.)
» Assumption made by many ML models.
» Identically distributed: Examples come from same distribution.
» Independent: Value of one example doesn't influence other example.
» = Probability of data set is product of example probabilities.

Pmodel x 0 Hpmodel )
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Maximum Likelihood Estimation

@ Likelihood: Probability of data viewed as function of parameters 6
o (Negative) Log-Likelihood (NLL):
» Logarithm is monotonically increasing

* Maximum of function stays the same
* Easier to do arithmetic with (sums vs. products)

» Optimization is often formulated as minimization = take negative of
function.

@ Maximum likelihood estimator for O:

OpL = argmaxy Pmodel (X; 0)

m
= argmaxy H pmodel(x(l); 0)
i=1

m
= argmaxy Z log Pmodel (x; 6)
i=1
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Conditional Log-Likelihood

Log-likelihood can be stated for supervised and unsupervised tasks.

Unsupervised learning (e.g. density estimation).
» Task: model pmoder(X; 0) (as before)
> X = {x(l), . x(m)}
Supervised learning (Predictive modelling):
» Task: model prmoge(y|X; 0)
> X:{x(l),'..x(m)}v y:{y(l),y(m)}

@ Maximum likelihood estimation for the supervised i.i.d. case:

Om = argmaxg P(y|X; )

= argmaxg Z log P(y)|x("); @)
i=1
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Linear Regression as Maximum Likelihood

@ Instead of predicting one value y for an input x, model probability
distribution p(y/|x).

@ For the same value of x, different values of y may occur (with
different probability).
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Gaussian Distribution

o Gaussian distribution: N(y|u,0?) = mﬁ xp[ (y—‘ﬁ}

» Quadratic function as negative exponent, scaled by variance
» Normalization factor —2

o2
10 T T I I
L H=0, 07=02,—
/\ p=0, 02=10,—
08 H=0, 02=5.0,=—
L / \ p=-2, 62=05,—| |
06 / \
. /\
02 N
- /f :x\ .
P — _/ N ]
e S e S R e
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Linear Regression as Maximum Likelihood
@ Assume label y is distributed by a Gaussian, depending on features x
p(ylx) = N(yln,o®)

where the mean is determined by the linear transformation

pw=07x

and o is a constant.

plylx}
03

0.2-

0.1
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Linear Regression as Maximum Likelihood

e Gaussian distribution: N(y|u,o?) = #%exp [— (};/;)2}

» Taking the log makes it a quadratic function!
o Conditional log-likelihood:

—log P(y|X; 0)
m . .
== logp(y"|x; )
i=1
m (i T, ()2
_ m (y?) —07x")
= mlogo + 5 log(27) + Z 52

i=1
1 I~ . T (2
:const+27‘2;(y(’)—9 x(y

@ What is optimal 67
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Linear Regression as Maximum Likelihood

o Conditional negative log-likelihood:
1 . )
NLL(6) = const + — Z(y(’) —07x()?

o Compare to previous result:

1 o, (; ,
MSE(w) = — > (W — wTx()2
i=1

@ Minimizing NLL under these assumptions is equivalent to minimizing

MSE!
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Maximum Likelihood: Summary

@ Many machine learning problems can be stated in a probabilistic way.
@ Mean squared error linear regression can be stated as a probabilistic
model that allows for Gaussian random noise around the predicted

value y.
@ A straightforward optimization is to maximize the likelihood of the
training data.

@ Maximum likelihood is not Bayesian, and may give undesirable results
(e.g. if there is only little training data).

@ In practice, MLE and point estimates are often used to solve machine
learning problems.
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