Machine Learning Basics III

Benjamin Roth

CIS LMU München

Benjamin Roth (CIS LMU München)

Machine Learning Basics III

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

1 Classification

Logistic Regression

Gradient Based Optimization

- Gradient Descent for Logistic Regression
- Stochastic Gradient Descent

Deep Feedforward Networks

- Design Choices for Output Units
- Design Choices for Hidden Units

∃ ► < ∃ ►

Classification

Logistic Regression

2 Gradient Based Optimization

- Gradient Descent for Logistic Regression
- Stochastic Gradient Descent

3 Deep Feedforward Networks

- Design Choices for Output Units
- Design Choices for Hidden Units

3 1 4 3 1

From Regression to Classification

- So far, linear regression:
 - A simple linear model.
 - Probabilistic interpretation.
 - Find optimal parameters using Maximum Likelihood Estimation.
- Can we do something similar for classification?
- \Rightarrow Logistic Regression (... it's not actually used for regression ...)

Logistic Regression

Binary logistic model:

Estimate the probability of a binary response $y \in \{0,1\}$ based on features w.

• Logistic Regression is a *Generalized Linear Model*: Linear model is related to the response variable via a **link function**.

$$p(Y = 1 | \mathbf{x}; \boldsymbol{\theta}) = f(\boldsymbol{\theta}^T \mathbf{x})$$

(Note: Y denotes a random variable, whereas y, $y^{(i)}$, 0, 1 denote values that the random variable can take on. If the random variable is obvious from the context, it may be omitted.)

Benjamin Roth (CIS LMU München)

Logistic Regression

- Recall linear regression: $p(y|x; \theta) = N(y; \theta^T x, I)$
 - Predicts $y \in \mathbb{R}$
- Classification: Outcome (per example) 0 or 1
 - Logistic sigmoid: $\sigma(z) = \frac{1}{1+e^{-z}}$

► Logistic Regression: Linear function + logistic sigmoid

$$p(Y = 1 | \boldsymbol{x}; \boldsymbol{\theta}) = \sigma(\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x})$$

(四) (ヨ) (ヨ)

Binary Logistic Regression

Probability of different outcomes (for one example):

• Probability of positive outcome:

$$p(Y = 1 | \mathbf{x}; \boldsymbol{\theta}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^T \mathbf{x}}}$$

• Probability of negative outcome:

$$p(Y = 0 | \mathbf{x}; \boldsymbol{\theta}) = 1 - p(Y = 1 | \mathbf{x}; \boldsymbol{\theta})$$

Probability of a Training Example

- Probability for actual label $y^{(i)}$ given features $\mathbf{x}^{(i)}$
- Can be written for both labels (0 and 1) without case distinction
- Label exponentiation trick: use $x^0 = 1$

$$p(Y = y^{(i)} | \mathbf{x}^{(i)}; \theta)$$

$$= \begin{cases} p(Y = 1 | \mathbf{x}^{(i)}; \theta) & \text{if } y^{(i)} = 1 \\ p(Y = 0 | \mathbf{x}^{(i)}; \theta) & \text{if } y^{(i)} = 0 \end{cases}$$

$$= \begin{cases} p(Y = 1 | \mathbf{x}^{(i)}; \theta)^1 p(Y = 0 | \mathbf{x}^{(i)}; \theta)^0 & \text{if } y^{(i)} = 1 \\ p(Y = 1 | \mathbf{x}^{(i)}; \theta)^0 p(Y = 0 | \mathbf{x}^{(i)}; \theta)^1 & \text{if } y^{(i)} = 0 \end{cases}$$

$$= p(Y = 1 | \mathbf{x}^{(i)}; \theta)^{y^{(i)}} p(Y = 0 | \mathbf{x}^{(i)}; \theta)^{1-y^{(i)}}$$

<日

<</p>

Binary Logistic Regression

• Conditional Negative Log-Likelihood (NLL):

$$NLL(\boldsymbol{\theta}) = -\log p(\boldsymbol{y}|\boldsymbol{X}; \boldsymbol{\theta})$$
$$= -\log \prod_{i=1}^{m} p(\boldsymbol{Y} = \boldsymbol{y}^{(i)} | \boldsymbol{x}^{(i)}; \boldsymbol{\theta})$$

$$= -\log \prod_{i=1}^{m} p(Y = 1 | \mathbf{x}^{(i)}; \theta)^{y^{(i)}} (1 - p(Y = 1 | \mathbf{x}^{(i)}; \theta))^{1 - y^{(i)}}$$
$$= -\sum_{i=1}^{m} y^{(i)} \log \sigma(\theta^{T} \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta^{T} \mathbf{x}^{(i)}))$$

- No closed form solution for minimum
- Use numerical / iterative methods.

m

• LBFGS, Gradient descent ...

Logistic Regression

- Logistic regression: Logistic sigmoid function applied to a a weighted linear combination of feature values.
- To be interpreted as the probability that the label for a specific example equals 1.
- Applying the model on test data: Predict $y^{(i)} = 1$ if

$$p(Y=1|\mathbf{x^{(i)}}; \theta) > 0.5$$

- No closed form solution for maximizing NLL, iterative methods necessary.
- Next up: Gradient descent.

< 回 > < 回 > < 回 >

1 Classification

Logistic Regression

2 Gradient Based Optimization

- Gradient Descent for Logistic Regression
- Stochastic Gradient Descent

Deep Feedforward Networks

- Design Choices for Output Units
- Design Choices for Hidden Units

4 3 4 3 4 3 4

Optimization

- Optimization: Minimize some function $J(\theta)$ by altering θ .
- Maximize $f(\theta)$ by minimizing $J(\theta) = -f(\theta)$
- *J*(θ):
 - "criterion", "objective function", "cost function", "loss function", "error function"
 - In a probabilistic machine learning setting often (conditional) negative log-likelihood:

$$-\log p(\boldsymbol{X}; \boldsymbol{ heta})$$

or

$$-\log p(\boldsymbol{y}|\boldsymbol{X};\boldsymbol{\theta})$$

as a function of θ

 $\bullet \ \theta^* = \arg\min_{\theta} J(\theta)$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Optimization

- If $J(\theta)$ is convex, it is minimized where $abla_{ heta} J(heta) = \mathbf{0}$
- If $J(\theta)$ is not convex, the gradient can help us to improve our objective nevertheless (and find a local optimum).
- Many optimization techniques were originally developed for convex objective functions, but are found to be working well for non-convex functions too.
- Use the fact that gradient indicates the slope of the function in the direction of steepest increase.

Gradient-Based Optimization

• Derivative: Given a small change in input, what is the corresponding change in output?

 $f(x+\epsilon) \approx f(x) + \epsilon f'(x)$

Gradient Descent

- For $J(\boldsymbol{\theta}): \mathbb{R}^n \to \mathbb{R}$
- If partial derivative $\frac{\partial J(\theta)}{\partial \theta_j} > 0$, $J(\theta)$ will increase for small increases of θ_j

 \Rightarrow go in opposite direction of gradient (since we want to minimize)

• Steepest descent: iterate

$$\boldsymbol{\theta}_{t+1} \leftarrow \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

- η is the learning rate (set to small positive constant).
- Converges if $\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$ is (close to) **0**

・ 同 ト ・ ヨ ト ・ ヨ ト …

Local Minima

• If function is non-convex, different results can be obtained at convergence, depending on initialization of θ .

Local Minima

• Minima can be global or local:

• For neural networks, only good (not perfect) parameter values can be found.

< □ > < □ > < □ > < □ > < □ > < □ >

Logistic Regression

2 Gradient Based Optimization

- Gradient Descent for Logistic Regression
- Stochastic Gradient Descent

3 Deep Feedforward Networks

- Design Choices for Output Units
- Design Choices for Hidden Units

くヨト くヨト

Gradient Descent for Logistic Regression

$$\nabla_{\theta} \mathsf{NLL}(\theta) = -\nabla_{\theta} \sum_{i=1}^{m} y^{(i)} \log \sigma(\theta^{\mathsf{T}} \mathbf{x}^{(i)}) + (1 - y^{(i)}) \log(1 - \sigma(\theta^{\mathsf{T}} \mathbf{x}^{(i)}))$$
$$= -\sum_{i=1}^{m} (y^{(i)} - \sigma(\theta^{\mathsf{T}} \mathbf{x}^{(i)})) \mathbf{x}^{(i)}$$

• The gradient descent update becomes:

$$\boldsymbol{\theta}_{t+1} \coloneqq \boldsymbol{\theta}_t + \eta \sum_{i=1}^m (\boldsymbol{y}^{(i)} - \sigma(\boldsymbol{\theta}_t^T \boldsymbol{x}^{(i)})) \boldsymbol{x}^{(i)}$$

• Note: Which feature weights are increased, which are decreased?

Derivation of Gradient for Logistic Regression

This is a great exercise! Use the following facts:

Gradient	$(abla_ heta f(oldsymbol{ heta}))_j = rac{\partial f(oldsymbol{ heta})}{\partial oldsymbol{ heta}_j}$
Derivative of a sum	$rac{d}{dz}\sum_i f_i(z) = \sum_i rac{df_i(z)}{dz}$
Chain rule	$F(z) = f(g(z)) \Rightarrow F'(z) = f'(g(z))g'(z)$
Derivative of logarithm	$rac{d\log z}{dz} = 1/z$
D. of logistic sigmoid	$rac{d\sigma(z)}{dz} = \sigma(z)(1 - \sigma(z))$
Partial d. of dot-product	$\frac{\partial \boldsymbol{\theta}^{T} \boldsymbol{x}}{\partial \theta_j} = \boldsymbol{x}_j$

.

Gradient Descent: Summary

- Iterative method for function minimization.
- Gradient indicates rate of change in objective function, given a local change to feature weights.
- Substract the gradient:
 - decrease parameters that (locally) have positive correlation with objective
 - increase parameters that (locally) have negative correlation with objective
- Gradient updates only have the desired properties in a small region around previous parameters θ_t . Control locality by step-size η .
- Gradient descent is slow: For relatively small step in the right direction, all of training data has to be processed.
- This version of gradient descent is often also called *batch gradient descent*.

< 回 > < 回 > < 回 >

1 Classification

Logistic Regression

Gradient Based Optimization

- Gradient Descent for Logistic Regression
- Stochastic Gradient Descent

3 Deep Feedforward Networks

- Design Choices for Output Units
- Design Choices for Hidden Units

4 3 4 3 4 3 4

Stochastic Gradient Descent (SGD)

• *Batch gradient descent* is slow: For relatively small step in the right direction, all of training data has to be processed.

$$\boldsymbol{\theta}_{t+1} \leftarrow \boldsymbol{\theta}_t + \eta \nabla_{\boldsymbol{\theta}} \sum_{i=1}^m \log p(y_i | \boldsymbol{x}_i; \boldsymbol{\theta})$$

- Stochastic gradient descent in a nutshell:
 - For each update, only use random sample B_t of training data (mini-batch).

$$\boldsymbol{\theta}_{t+1} \leftarrow \boldsymbol{\theta}_t + \eta \nabla_{\boldsymbol{\theta}} \sum_{i \in \mathbb{B}_t} \log p(y_i | \boldsymbol{x}_i; \boldsymbol{\theta})$$

Mini-batch size can also just be 1.

$$\boldsymbol{\theta}_{t+1} \leftarrow \boldsymbol{\theta}_t + \eta \nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{y}_t | \boldsymbol{x}_t; \boldsymbol{\theta})$$

• \Rightarrow More frequent updates.

Stochastic Gradient Descent (SGD)

- The actual gradient is *approximated* using only a sub-sample of the data.
- For objective functions that are highly non-convex, the random deviations of these approximations may even help to escape local minima.
- Treat batch size and learning rate as hyper-parameter.

1 Classification

Logistic Regression

Gradient Based Optimization

- Gradient Descent for Logistic Regression
- Stochastic Gradient Descent

3 Deep Feedforward Networks

- Design Choices for Output Units
- Design Choices for Hidden Units

4 3 4 3 4 3 4

Deep Feedforward Networks

- Function approximation: find good mapping $\hat{y} = f(x; \theta)$
- *Network*: Composition of functions $f^{(1)}, f^{(2)}, f^{(3)}$ with multi-dimensional input and output
- Each $f^{(i)}$ represents one layer $f(x) = f^{(1)}(f^{(2)}(f^{(3)}(x)))$
- Feedforward:
 - $\blacktriangleright \ \mathsf{Input} \to \mathsf{intermediate} \ \mathsf{representation} \to \mathsf{output}$
 - No feedback connections
 - Cf. recurrent networks

・ 何 ト ・ ヨ ト ・ ヨ ト …

Deep Feedforward Networks: Training

- Loss function defined on output layer, e.g. $||\hat{y} f(x; \theta)||_2^2$
- Quality criterion on other layers not directly defined.
- Training algorithm must decide how to use those layers most effectively (w.r.t. loss on output layer)
- Non-output layers can be viewed as providing a feature function $\phi(\mathbf{x})$ of the input, that is to be learned.

• • = • • = •

"Neural" Networks

- Inspired by biological neurons (nerve cells)
- Neurons are connected to each other, and receive and send electrical pulses.
- "If the [input] voltage changes by a large enough amount, an all-or-none electrochemical pulse called an action potential is generated, which travels rapidly along the cell's axon, and activates synaptic connections with other cells when it arrives." (Wikipedia)

Activation Functions with Non-Linearities

- Linear Functions are limited in what they can express.
- Famous example: XOR
- Simple layered non-linear functions can represent XOR.

Classification

Logistic Regression

2 Gradient Based Optimization

- Gradient Descent for Logistic Regression
- Stochastic Gradient Descent

Deep Feedforward Networks Design Choices for Output Units Design Choices for Hidden Units

4 3 4 3 4 3 4

Design Choices for Output Units

- Typically can be interpreted as probabilities.
 - Logistic sigmoid
 - Softmax
 - mean and variance of a Gaussian, ...
- Trained with negative log-likelihood.

.

Softmax

- Logistic sigmoid
 - ▶ Vector **y** of binary outcomes, with no contraints on how many can be 1.
 - Bernoulli distribution.
- Softmax
 - Exactly one element of **y** is 1.
 - Multinoulli (categorical) distribution.

$$p(Y = i | \phi(\mathbf{x}))$$

$$\sum_{i} p(Y = i | \phi(\mathbf{x})) = 1$$
softmax $(\mathbf{z})_{i} = \frac{exp(z_{i})}{\sum_{j} exp(z_{j})}$

э

イロト 不得 ト イヨト イヨト

Parametrizing a Gaussian Distribution

- Use final layer to predict parameters of Gaussian mixture model.
- Weight of mixture component: softmax.
- Means: no non-linearity.
- Precisions $(\frac{1}{\sigma^2})$ need to be positive: softplus

$$softplus(z) = ln(1 + exp(z))$$

Classification

Logistic Regression

Gradient Based Optimization

- Gradient Descent for Logistic Regression
- Stochastic Gradient Descent

Deep Feedforward Networks Design Choices for Output Units

• Design Choices for Hidden Units

(B)

Rectified Linear Units

• Rectified Linear Unit:

- Consistent gradient of 1 when unit is *active* (i.e. if there is an error to propagate).
- Default choice for hidden units.

A Simple ReLU Network to Solve XOR

f

$$(\mathbf{x}; \mathbf{W}, \mathbf{c}, \mathbf{w}) = \mathbf{w}^{T} max(0, \mathbf{W}^{T} \mathbf{x} + \mathbf{c})$$
$$\mathbf{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$
$$\mathbf{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$
$$\mathbf{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$$

æ

イロト イポト イヨト イヨト

Other Choices for Hidden Units

- A good activation function aids learning, and provides large gradients.
- Sigmoidal functions (logistic sigmoid)
 - have only a small region before they flatten out in either direction.
 - Practice shows that this seems to be ok in conjunction with Log-loss objective.
 - But they don't work as well as hidden units.
 - ReLU are better alternative since gradient stays constant.
- Other hidden unit functions:
 - maxout: take maximum of several values in previous layer.
 - purely linear: can serve as low-rank approximation.

▲ ศ 🛛 ト ▲ 三 ト

Summary

- Gradient descent: Minimize loss by iteratively substracting gradient from parameter vector.
- Stochastic gradient descent: Approximate gradient by considering small subsets of examples.
- Regularization: penalize large parameter values, e.g. by adding l2-norm of parameter vector.
- Feedforward networks: layers of (non-linear) function compositions.
- Output non-linearities: interpreted as probability densities (logistic sigmoid, softmax, Gaussian)
- Hidden layers: Rectified linear units (max(0, z))

< 回 > < 三 > < 三 > -