
Machine Learning Basics III

Benjamin Roth

CIS LMU München

Benjamin Roth (CIS LMU München) Machine Learning Basics III 1 / 62

Outline

1 Classification
Logistic Regression

2 Gradient Based Optimization
Gradient Descent for Logistic Regression
Stochastic Gradient Descent

3 Deep Feedforward Networks
Design Choices for Output Units
Design Choices for Hidden Units
Backpropagation

4 Regularization
L2-Regularization

Benjamin Roth (CIS LMU München) Machine Learning Basics III 2 / 62

Outline

1 Classification
Logistic Regression

2 Gradient Based Optimization
Gradient Descent for Logistic Regression
Stochastic Gradient Descent

3 Deep Feedforward Networks
Design Choices for Output Units
Design Choices for Hidden Units
Backpropagation

4 Regularization
L2-Regularization

Benjamin Roth (CIS LMU München) Machine Learning Basics III 3 / 62

From Regression to Classification

So far, linear regression:
I A simple linear model.
I Probabilistic interpretation.
I Find optimal parameters using Maximum Likelihood Estimation.

Can we do something similar for classification?

⇒ Logistic Regression (. . . it’s not actually used for regression . . .)

Benjamin Roth (CIS LMU München) Machine Learning Basics III 4 / 62

Logistic Regression

Binary logistic model:
Estimate the probability of a binary response y ∈ {0, 1} based on
features w.

Logistic Regression is a Generalized Linear Model:
Linear model is related to the response variable via a link function.

p(Y = 1|x;θ) = f (θTx)

(Note: Y denotes a random variable, whereas y , y (i), 0, 1 denote values that the random
variable can take on. If the random variable is obvious from the context, it may be
omitted.)

Benjamin Roth (CIS LMU München) Machine Learning Basics III 5 / 62

Logistic Regression

Recall linear regression: p(y |x;θ) = N(y ;θTx, I)
I Predicts y ∈ R

Classification: Outcome (per example) 0 or 1
I Logistic sigmoid: σ(z) = 1

1+e−z

I Logistic Regression: Linear function + logistic sigmoid

p(Y = 1|x;θ) = σ(θTx)

Benjamin Roth (CIS LMU München) Machine Learning Basics III 6 / 62

Binary Logistic Regression

Probability of different outcomes (for one example):

Probability of positive outcome:

p(Y = 1|x;θ) =
1

1 + e−θ
T x

Probability of negative outcome:

p(Y = 0|x;θ) = 1− p(Y = 1|x;θ)

Benjamin Roth (CIS LMU München) Machine Learning Basics III 7 / 62

Probability of a Training Example

Probability for actual label y (i) given features x(i)

Can be written for both labels (0 and 1) without case distinction

Label exponentiation trick: use x0 = 1

p(Y = y (i)|x(i);θ)

=

{
p(Y = 1|x(i);θ) if y (i) = 1

p(Y = 0|x(i);θ) if y (i) = 0

=

{
p(Y = 1|x(i);θ)1p(Y = 0|x(i);θ)0 if y (i) = 1

p(Y = 1|x(i);θ)0p(Y = 0|x(i);θ)1 if y (i) = 0

= p(Y = 1|x(i);θ)y
(i)
p(Y = 0|x(i);θ)1−y

(i)

Benjamin Roth (CIS LMU München) Machine Learning Basics III 8 / 62

Binary Logistic Regression

Conditional Negative Log-Likelihood (NLL):

NLL(θ) = − log p(y|X;θ)

= − log
m∏
i=1

p(Y = y (i)|x(i);θ)

= − log
m∏
i=1

p(Y = 1|x(i);θ)y
(i)

(1− p(Y = 1|x(i);θ))1−y
(i)

= −
m∑
i=1

y (i) log σ(θTx(i)) + (1− y (i)) log(1− σ(θTx(i)))

No closed form solution for minimum

Use numerical / iterative methods.

LBFGS, Gradient descent ...

Benjamin Roth (CIS LMU München) Machine Learning Basics III 9 / 62

Logistic Regression

Logistic regression: Logistic sigmoid function applied to a a weighted
linear combination of feature values.

To be interpreted as the probability that the label for a specific
example equals 1.

Applying the model on test data: Predict y (i) = 1 if

p(Y = 1|x(i);θ) > 0.5

No closed form solution for maximizing NLL, iterative methods
necessary.

Next up: Gradient descent.

Benjamin Roth (CIS LMU München) Machine Learning Basics III 10 / 62

Outline

1 Classification
Logistic Regression

2 Gradient Based Optimization
Gradient Descent for Logistic Regression
Stochastic Gradient Descent

3 Deep Feedforward Networks
Design Choices for Output Units
Design Choices for Hidden Units
Backpropagation

4 Regularization
L2-Regularization

Benjamin Roth (CIS LMU München) Machine Learning Basics III 11 / 62

Optimization

Optimization: Minimize some function J(θ) by altering θ.

Maximize f (θ) by minimizing J(θ) = −f (θ)

J(θ):
I “criterion”, “objective function”, “cost function”, “loss function”,

“error function”
I In a probabilistic machine learning setting often (conditional) negative

log-likelihood:
− log p(X;θ)

or
− log p(y|X;θ)

as a function of θ
I θ∗ = arg minθ J(θ)

Benjamin Roth (CIS LMU München) Machine Learning Basics III 12 / 62

Optimization
If J(θ) is convex, it is minimized where ∇θJ(θ) = 0
If J(θ) is not convex, the gradient can help us to improve our
objective nevertheless (and find a local optimum).
Many optimization techniques were originally developed for convex
objective functions, but are found to be working well for non-convex
functions too.
Use the fact that gradient indicates the slope of the function in the
direction of steepest increase.

Benjamin Roth (CIS LMU München) Machine Learning Basics III 13 / 62

Gradient-Based Optimization
Derivative: Given a small change in input, what is the corresponding
change in output?

f (x + ε) ≈ f (x) + εf ′(x)

f (x − ε sign f ′(x)) < f (x) for small enough ε
Benjamin Roth (CIS LMU München) Machine Learning Basics III 14 / 62

Gradient Descent

For J(θ) : Rn → R
If partial derivative ∂J(θ)

∂θj
> 0, J(θ) will increase for small increases of

θj

⇒ go in opposite direction of gradient (since we want to minimize)

Steepest descent: iterate

θt+1 ← θ − η∇θJ(θ)

η is the learning rate (set to small positive constant).

Converges if ∇θJ(θ) is (close to) 0

Benjamin Roth (CIS LMU München) Machine Learning Basics III 15 / 62

Local Minima

If function is non-convex, different results can be obtained at
convergence, depending on initialization of θ.

Benjamin Roth (CIS LMU München) Machine Learning Basics III 16 / 62

Local Minima
Minima can be global or local:

Critical (stationary) points: f ′(x) = 0

For neural networks, only good (not perfect) parameter values can be
found.

Benjamin Roth (CIS LMU München) Machine Learning Basics III 17 / 62

Outline

1 Classification
Logistic Regression

2 Gradient Based Optimization
Gradient Descent for Logistic Regression
Stochastic Gradient Descent

3 Deep Feedforward Networks
Design Choices for Output Units
Design Choices for Hidden Units
Backpropagation

4 Regularization
L2-Regularization

Benjamin Roth (CIS LMU München) Machine Learning Basics III 18 / 62

Gradient Descent for Logistic Regression

∇θNLL(θ) = −∇θ
m∑
i=1

y (i) log σ(θTx(i)) + (1− y (i)) log(1− σ(θTx(i)))

= −
m∑
i=1

(y (i) − σ(θTx(i)))x(i)

The gradient descent update becomes:

θt+1 := θt + η

m∑
i=1

(y (i) − σ(θT
t x

(i)))x(i)

Note: Which feature weights are increased, which are decreased?

Benjamin Roth (CIS LMU München) Machine Learning Basics III 19 / 62

Derivation of Gradient for Logistic Regression

This is a great exercise! Use the following facts:

Gradient (∇θf (θ))j = ∂f (θ)
∂θj

Derivative of a sum d
dz

∑
i fi (z) =

∑
i
dfi (z)
dz

Chain rule F (z) = f (g(z)) ⇒ F ′(z) = f ′(g(z))g ′(z)

Derivative of logarithm d log z
dz = 1/z

D. of logistic sigmoid dσ(z)
dz = σ(z)(1− σ(z))

Partial d. of dot-product ∂θT x
∂θj

= xj

Benjamin Roth (CIS LMU München) Machine Learning Basics III 20 / 62

Gradient Descent: Summary

Iterative method for function minimization.

Gradient indicates rate of change in objective function, given a local
change to feature weights.

Substract the gradient:
I decrease parameters that (locally) have positive correlation with

objective
I increase parameters that (locally) have negative correlation with

objective

Gradient updates only have the desired properties in a small region
around previous parameters θt . Control locality by step-size η.

Gradient descent is slow: For relatively small step in the right
direction, all of training data has to be processed.

This version of gradient descent is often also called batch gradient
descent.

Benjamin Roth (CIS LMU München) Machine Learning Basics III 21 / 62

Outline

1 Classification
Logistic Regression

2 Gradient Based Optimization
Gradient Descent for Logistic Regression
Stochastic Gradient Descent

3 Deep Feedforward Networks
Design Choices for Output Units
Design Choices for Hidden Units
Backpropagation

4 Regularization
L2-Regularization

Benjamin Roth (CIS LMU München) Machine Learning Basics III 22 / 62

Stochastic Gradient Descent (SGD)

Batch gradient descent is slow: For relatively small step in the right
direction, all of training data has to be processed.

θt+1 ← θt + η∇θ
m∑
i=1

log p(yi |xi ;θ)

Stochastic gradient descent in a nutshell:
I For each update, only use random sample Bt of training data

(mini-batch).

θt+1 ← θt + η∇θ

∑
i∈Bt

log p(yi |xi ;θ)

I Mini-batch size can also just be 1.

θt+1 ← θt + η∇θ log p(yt |xt ;θ)

⇒ More frequent updates.

Benjamin Roth (CIS LMU München) Machine Learning Basics III 23 / 62

Stochastic Gradient Descent (SGD)

The actual gradient is approximated using only a sub-sample of the
data.

For objective functions that are highly non-convex, the random
deviations of these approximations may even help to escape local
minima.

Treat batch size and learning rate as hyper-parameter.

Benjamin Roth (CIS LMU München) Machine Learning Basics III 24 / 62

Outline

1 Classification
Logistic Regression

2 Gradient Based Optimization
Gradient Descent for Logistic Regression
Stochastic Gradient Descent

3 Deep Feedforward Networks
Design Choices for Output Units
Design Choices for Hidden Units
Backpropagation

4 Regularization
L2-Regularization

Benjamin Roth (CIS LMU München) Machine Learning Basics III 25 / 62

Deep Feedforward Networks

Function approximation: find good mapping ŷ = f (x;θ)

Network: Composition of functions f (1), f (2), f (3) with
multi-dimensional input and output

Each f (i) represents one layer f (x) = f (1)(f (2)(f (3)(x))))

Feedforward:

I Input → intermediate representation → output
I No feedback connections
I Cf. recurrent networks

Benjamin Roth (CIS LMU München) Machine Learning Basics III 26 / 62

Deep Feedforward Networks: Training

Loss function defined on output layer, e.g. ||ŷ − f (x;θ)||12
Quality criterion on other layers not directly defined.

Training algorithm must decide how to use those layers most
effectively (w.r.t. loss on output layer)

Non-output layers can be viewed as providing a feature function φ(x)
of the input, that is to be learned.

Benjamin Roth (CIS LMU München) Machine Learning Basics III 27 / 62

“Neural” Networks

Inspired by biological neurons (nerve cells)

Neurons are connected to each other, and receive and send electrical
pulses.

“If the [input] voltage changes by a large enough amount, an
all-or-none electrochemical pulse called an action potential is
generated, which travels rapidly along the cell’s axon, and activates
synaptic connections with other cells when it arrives.” (Wikipedia)

Benjamin Roth (CIS LMU München) Machine Learning Basics III 28 / 62

Activation Functions with Non-Linearities

Linear Functions are limited in what they can express.

Famous example: XOR

Simple layered non-linear functions can represent XOR.

Benjamin Roth (CIS LMU München) Machine Learning Basics III 29 / 62

Outline

1 Classification
Logistic Regression

2 Gradient Based Optimization
Gradient Descent for Logistic Regression
Stochastic Gradient Descent

3 Deep Feedforward Networks
Design Choices for Output Units
Design Choices for Hidden Units
Backpropagation

4 Regularization
L2-Regularization

Benjamin Roth (CIS LMU München) Machine Learning Basics III 30 / 62

Design Choices for Output Units

Typically can be interpreted as probabilities.
I Logistic sigmoid
I Softmax
I mean and variance of a Gaussian, ...

Trained with negative log-likelihood.

Benjamin Roth (CIS LMU München) Machine Learning Basics III 31 / 62

Softmax

Logistic sigmoid

I Vector y of binary outcomes, with no contraints on how many can be 1.
I Bernoulli distribution.

Softmax
I Exactly one element of y is 1.
I Multinoulli (categorical) distribution.

p(Y = i |φ(x))∑
i

p(Y = i |φ(x)) = 1

softmax(z)i =
exp(zi)∑
j exp(zj)

Benjamin Roth (CIS LMU München) Machine Learning Basics III 32 / 62

Parametrizing a Gaussian Distribution

Use final layer to predict parameters of Gaussian mixture model.

Weight of mixture component: softmax.

Means: no non-linearity.

Precisions (1
σ2) need to be positive: softplus

softplus(z) = ln(1 + exp(z))

Benjamin Roth (CIS LMU München) Machine Learning Basics III 33 / 62

Outline

1 Classification
Logistic Regression

2 Gradient Based Optimization
Gradient Descent for Logistic Regression
Stochastic Gradient Descent

3 Deep Feedforward Networks
Design Choices for Output Units
Design Choices for Hidden Units
Backpropagation

4 Regularization
L2-Regularization

Benjamin Roth (CIS LMU München) Machine Learning Basics III 34 / 62

Rectified Linear Units

Rectified Linear Unit:

relu(z) = max(0, z)

z = xTw + b

Consistent gradient of 1 when unit is active (i.e. if there is an error to
propagate).

Default choice for hidden units.

Benjamin Roth (CIS LMU München) Machine Learning Basics III 35 / 62

A Simple ReLU Network to Solve XOR

f (x;W, c,w) = wTmax(0,WTx + c)

W =

[
1 1
1 1

]

c =

[
0
−1

]

w =

[
1
−2

]

Benjamin Roth (CIS LMU München) Machine Learning Basics III 36 / 62

Other Choices for Hidden Units

A good activation function aids learning, and provides large gradients.

Sigmoidal functions (logistic sigmoid)
I have only a small region before they flatten out in either direction.
I Practice shows that this seems to be ok in conjunction with Log-loss

objective.
I But they don’t work as well as hidden units.
I ReLU are better alternative since gradient stays constant.

Other hidden unit functions:
I maxout: take maximum of several values in previous layer.
I purely linear: can serve as low-rank approximation.

Benjamin Roth (CIS LMU München) Machine Learning Basics III 37 / 62

Outline

1 Classification
Logistic Regression

2 Gradient Based Optimization
Gradient Descent for Logistic Regression
Stochastic Gradient Descent

3 Deep Feedforward Networks
Design Choices for Output Units
Design Choices for Hidden Units
Backpropagation

4 Regularization
L2-Regularization

Benjamin Roth (CIS LMU München) Machine Learning Basics III 38 / 62

Forward propagation: Input information x propagates through
network to produce output ŷ (and cost J(θ) in training)

Back-propagation:
I compute gradient w.r.t. model parameters
I Cost gradient propagates backwards through the network

Back-propagation is part of learning procedure (e.g. stochastic
gradient descent), not learning procedure in itself.

Benjamin Roth (CIS LMU München) Machine Learning Basics III 39 / 62

Chain Rule of Calculus: Real Functions

Let
x , y , z ∈ R

f , g : R→ R

y = g(x)

z = f (g(x)) = f (y)

Then
dz

dx
=

dz

dy

dy

dx

Benjamin Roth (CIS LMU München) Machine Learning Basics III 40 / 62

Chain Rule of Calculus: Multivariate Functions

Let
x ∈ Rm, y ∈ Rn, z ∈ R

f : Rn → R

g : Rm → Rn

y = g(x)

z = f (g(x)) = f (y)

Then
∂z

∂xi
=

n∑
j=1

∂z

∂yj

∂yj
∂xi

In order to write this in vector notation, we need to define the
Jacobian matrix.

Benjamin Roth (CIS LMU München) Machine Learning Basics III 41 / 62

Jacobian

The Jacobian matrix is the matrix of all first-order partial derivatives
of a vector-valued function.

J =
∂g(x)

∂x
=



∂g(x)1
∂x1

· · · ∂g(x)1
∂xm

∂g(x)2
∂x1

∂g(x)2
∂xm

...
. . .

...

∂g(x)n
∂x1

· · · ∂g(x)n
∂xm


How to write in terms of gradients?

We can write the chain rule as:

∇xz =

(
∂y

∂x

)T

∇yz

Benjamin Roth (CIS LMU München) Machine Learning Basics III 42 / 62

Jacobian

The Jacobian matrix is the matrix of all first-order partial derivatives
of a vector-valued function.

J =
∂g(x)

∂x
=



∂g(x)1
∂x1

· · · ∂g(x)1
∂xm

∂g(x)2
∂x1

∂g(x)2
∂xm

...
. . .

...

∂g(x)n
∂x1

· · · ∂g(x)n
∂xm


How to write in terms of gradients?

We can write the chain rule as:

∇xz =

(
∂y

∂x

)T

∇yz

Benjamin Roth (CIS LMU München) Machine Learning Basics III 42 / 62

Viewing the Network as a Graph

Nodes are function outputs (can be scalar or vector valued)

Arrows are inputs

Example: Scalar multiplication z = xy .

x yx

z

x× y

Benjamin Roth (CIS LMU München) Machine Learning Basics III 43 / 62

Which Function?

x w

u

xT w

σ(u)

ŷ

Benjamin Roth (CIS LMU München) Machine Learning Basics III 44 / 62

Graph with Cost

x w

u

xT w

σ(u)

ŷ

−log P(y∣ŷ)

L

Benjamin Roth (CIS LMU München) Machine Learning Basics III 45 / 62

Which Function?

Parameter vectors can be converted to matrix as needed.

h w

u

hT w

σ (u)

ŷ

x V

max (0,u')

Vx

u'

Benjamin Roth (CIS LMU München) Machine Learning Basics III 46 / 62

Forward Pass

Green: known or computed.

h w

u

hT w

σ (u)

ŷ

x V

max (0,u')

Vx

u'

−log P(y∣ŷ)
L

Benjamin Roth (CIS LMU München) Machine Learning Basics III 47 / 62

Forward Pass

Green: known or computed.

h w

u

hT w

σ (u)

ŷ

x V

max (0,u')

Vx

u'

−log P(y∣ŷ)
L

Benjamin Roth (CIS LMU München) Machine Learning Basics III 48 / 62

Forward Pass

Green: known or computed.

h w

u

hT w

σ (u)

ŷ

x V

max (0,u')

Vx

u'

−log P(y∣ŷ)
L

Benjamin Roth (CIS LMU München) Machine Learning Basics III 49 / 62

Forward Pass

End of forward pass (some steps skipped).

h w

u

hT w

σ (u)

ŷ

x V

max (0,u')

Vx

u'

−log P(y∣ŷ)
L

Benjamin Roth (CIS LMU München) Machine Learning Basics III 50 / 62

Backward Pass

Red: gradient of cost computed for node.

h w

u

hT w

σ (u)

ŷ

x V

max (0,u')

Vx

u'

−log P(y∣ŷ)
L dL

d ŷ

Benjamin Roth (CIS LMU München) Machine Learning Basics III 51 / 62

Backward Pass

Red: gradient of cost computed for node.

h w

u

hT w

σ (u)

ŷ

x V

max (0,u')

Vx

u'

−log P(y∣ŷ)
L dL

d ŷ

dL
d ŷ

d ŷ
du

Benjamin Roth (CIS LMU München) Machine Learning Basics III 52 / 62

Backward Pass

Red: gradient of cost computed for node.

h w

u

hT w

σ (u)

ŷ

x V

max (0,u')

Vx

u'

−log P(y∣ŷ)
L dL

d ŷ

dL
d ŷ

d ŷ
du

dL
d ŷ

d ŷ
du

δu
δw

dL
d ŷ

d ŷ
du

δu
δh

Benjamin Roth (CIS LMU München) Machine Learning Basics III 53 / 62

End of Backward Pass

We have the gradients for all parameters, let’s use them for SGD.

h w

u

hT w

σ (u)

ŷ

x V

max (0,u')

Vx

u'

−log P(y∣ŷ)
L dL

d ŷ

dL
d ŷ

d ŷ
du

dL
d ŷ

d ŷ
du

δu
δw

dL
d ŷ

d ŷ
du

δu
δh

(
δh
δu '

)
T dL
d ŷ

d ŷ
du

δu
δh

(
δu '
δV

)
T

(
δh
δu '

)
T dL
d ŷ

d ŷ
du

δu
δh

Benjamin Roth (CIS LMU München) Machine Learning Basics III 54 / 62

Summary

Gradient descent: Minimize loss by iteratively substracting gradient
from parameter vector.

Stochastic gradient descent: Approximate gradient by considering
small subsets of examples.

Regularization: penalize large parameter values, e.g. by adding
l2-norm of parameter vector.

Feedforward networks: layers of (non-linear) function compositions.

Output non-linearities: interpreted as probability densities (logistic
sigmoid, softmax, Gaussian)

Hidden layers: Rectified linear units (max(0, z))

Backpropagation: Compute gradient of cost w.r.t. parameters using
chain rule.

Benjamin Roth (CIS LMU München) Machine Learning Basics III 55 / 62

Outline

1 Classification
Logistic Regression

2 Gradient Based Optimization
Gradient Descent for Logistic Regression
Stochastic Gradient Descent

3 Deep Feedforward Networks
Design Choices for Output Units
Design Choices for Hidden Units
Backpropagation

4 Regularization
L2-Regularization

Benjamin Roth (CIS LMU München) Machine Learning Basics III 56 / 62

Outline

1 Classification
Logistic Regression

2 Gradient Based Optimization
Gradient Descent for Logistic Regression
Stochastic Gradient Descent

3 Deep Feedforward Networks
Design Choices for Output Units
Design Choices for Hidden Units
Backpropagation

4 Regularization
L2-Regularization

Benjamin Roth (CIS LMU München) Machine Learning Basics III 57 / 62

Regularization

feature

prediction

x
x

x
x

x
x

x
x x

feature

prediction

x
x

x
x

x
x

x
x x

feature

prediction

x
x

x
x

x
x

x
x x

Overfitting vs. underfitting

Regularization: Any modification to a learning algorithm for reducing
its generalization error but not its training error

Build a preference into ML algorithm for one solution in hypothesis
space over another

Solution space is still the same

Unpreferred solution is penalized: only chosen if there it fits training
data much better

Benjamin Roth (CIS LMU München) Machine Learning Basics III 58 / 62

L2-Regularization

Large parameters → overfitting

σ(x) σ(2x) σ(100x)

Prefer models with smaller feature weights.

Popular regularizers:
I Penalize large L2 norm.
I Penalize large L1 norm (aka LASSO, induces sparsity)

Benjamin Roth (CIS LMU München) Machine Learning Basics III 59 / 62

Regularization

Add term that penalizes large l2 norm.

The amount of penalty is controlled by a parameter λ
I Linear regression:

J(θ) = MSE (θ) +
λ

2
θTθ

I Logistic regression:

J(θ) = NLL(θ) +
λ

2
θTθ

From a Bayesian perspective, l2-regularization corresponds to a
Gaussian prior on the parameters.

Benjamin Roth (CIS LMU München) Machine Learning Basics III 60 / 62

L2-Regularization

The surface of the objective function is now a combination of the
original cost, and the regularization penalty.

Benjamin Roth (CIS LMU München) Machine Learning Basics III 61 / 62

L2-Regularization

Gradient of regularization term:

∇θ
λ

2
θTθ = λθ

Gradient descent for regularized cost function:

θt+1 := θt − η∇θ(NLL(θt) + λθT
t θt)

⇔

θt+1 := (1− ηλ)θt − η∇θNLL(θt)

Benjamin Roth (CIS LMU München) Machine Learning Basics III 62 / 62

	Classification
	Logistic Regression

	Gradient Based Optimization
	Gradient Descent for Logistic Regression
	Stochastic Gradient Descent

	Deep Feedforward Networks
	Design Choices for Output Units
	Design Choices for Hidden Units
	Backpropagation

	Regularization
	L2-Regularization

