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From Regression to Classification

So far, linear regression:
I A simple linear model.
I Probabilistic interpretation.
I Find optimal parameters using Maximum Likelihood Estimation.

Can we do something similar for classification?

⇒ Logistic Regression (. . . it’s not actually used for regression . . . )
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Logistic Regression

Binary logistic model:
Estimate the probability of a binary response y ∈ {0, 1} based on
features w.

Logistic Regression is a Generalized Linear Model:
Linear model is related to the response variable via a link function.

p(Y = 1|x;θ) = f (θTx)

(Note: Y denotes a random variable, whereas y , y (i), 0, 1 denote values that the random
variable can take on. If the random variable is obvious from the context, it may be
omitted.)
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Logistic Regression

Recall linear regression: p(y |x;θ) = N(y ;θTx, I)
I Predicts y ∈ R

Classification: Outcome (per example) 0 or 1
I Logistic sigmoid: σ(z) = 1

1+e−z

I Logistic Regression: Linear function + logistic sigmoid

p(Y = 1|x;θ) = σ(θTx)
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Binary Logistic Regression

Probability of different outcomes (for one example):

Probability of positive outcome:

p(Y = 1|x;θ) =
1

1 + e−θ
T x

Probability of negative outcome:

p(Y = 0|x;θ) = 1− p(Y = 1|x;θ)
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Probability of a Training Example

Probability for actual label y (i) given features x(i)

Can be written for both labels (0 and 1) without case distinction

Label exponentiation trick: use x0 = 1

p(Y = y (i)|x(i);θ)

=

{
p(Y = 1|x(i);θ) if y (i) = 1

p(Y = 0|x(i);θ) if y (i) = 0

=

{
p(Y = 1|x(i);θ)1p(Y = 0|x(i);θ)0 if y (i) = 1

p(Y = 1|x(i);θ)0p(Y = 0|x(i);θ)1 if y (i) = 0

= p(Y = 1|x(i);θ)y
(i)
p(Y = 0|x(i);θ)1−y

(i)
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Binary Logistic Regression

Conditional Negative Log-Likelihood (NLL):

NLL(θ) = − log p(y|X;θ)

= − log
m∏
i=1

p(Y = y (i)|x(i);θ)

= − log
m∏
i=1

p(Y = 1|x(i);θ)y
(i)

(1− p(Y = 1|x(i);θ))1−y
(i)

= −
m∑
i=1

y (i) log σ(θTx(i)) + (1− y (i)) log(1− σ(θTx(i)))

No closed form solution for minimum

Use numerical / iterative methods.

LBFGS, Gradient descent ...
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Logistic Regression

Logistic regression: Logistic sigmoid function applied to a a weighted
linear combination of feature values.

To be interpreted as the probability that the label for a specific
example equals 1.

Applying the model on test data: Predict y (i) = 1 if

p(Y = 1|x(i);θ) > 0.5

No closed form solution for maximizing NLL, iterative methods
necessary.

Next up: Gradient descent.
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Optimization

Optimization: Minimize some function J(θ) by altering θ.

Maximize f (θ) by minimizing J(θ) = −f (θ)

J(θ):
I “criterion”, “objective function”, “cost function”, “loss function”,

“error function”
I In a probabilistic machine learning setting often (conditional) negative

log-likelihood:
− log p(X;θ)

or
− log p(y|X;θ)

as a function of θ
I θ∗ = arg minθ J(θ)

Benjamin Roth (CIS LMU München) Machine Learning Basics III 12 / 62



Optimization
If J(θ) is convex, it is minimized where ∇θJ(θ) = 0
If J(θ) is not convex, the gradient can help us to improve our
objective nevertheless (and find a local optimum).
Many optimization techniques were originally developed for convex
objective functions, but are found to be working well for non-convex
functions too.
Use the fact that gradient indicates the slope of the function in the
direction of steepest increase.
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Gradient-Based Optimization
Derivative: Given a small change in input, what is the corresponding
change in output?

f (x + ε) ≈ f (x) + εf ′(x)

f (x − ε sign f ′(x)) < f (x) for small enough ε
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Gradient Descent

For J(θ) : Rn → R
If partial derivative ∂J(θ)

∂θj
> 0, J(θ) will increase for small increases of

θj

⇒ go in opposite direction of gradient (since we want to minimize)

Steepest descent: iterate

θt+1 ← θ − η∇θJ(θ)

η is the learning rate (set to small positive constant).

Converges if ∇θJ(θ) is (close to) 0
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Local Minima

If function is non-convex, different results can be obtained at
convergence, depending on initialization of θ.
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Local Minima
Minima can be global or local:

Critical (stationary) points: f ′(x) = 0

For neural networks, only good (not perfect) parameter values can be
found.
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Gradient Descent for Logistic Regression

∇θNLL(θ) = −∇θ
m∑
i=1

y (i) log σ(θTx(i)) + (1− y (i)) log(1− σ(θTx(i)))

= −
m∑
i=1

(y (i) − σ(θTx(i)))x(i)

The gradient descent update becomes:

θt+1 := θt + η

m∑
i=1

(y (i) − σ(θT
t x

(i)))x(i)

Note: Which feature weights are increased, which are decreased?
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Derivation of Gradient for Logistic Regression

This is a great exercise! Use the following facts:

Gradient (∇θf (θ))j = ∂f (θ)
∂θj

Derivative of a sum d
dz

∑
i fi (z) =

∑
i
dfi (z)
dz

Chain rule F (z) = f (g(z)) ⇒ F ′(z) = f ′(g(z))g ′(z)

Derivative of logarithm d log z
dz = 1/z

D. of logistic sigmoid dσ(z)
dz = σ(z)(1− σ(z))

Partial d. of dot-product ∂θT x
∂θj

= xj
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Gradient Descent: Summary

Iterative method for function minimization.

Gradient indicates rate of change in objective function, given a local
change to feature weights.

Substract the gradient:
I decrease parameters that (locally) have positive correlation with

objective
I increase parameters that (locally) have negative correlation with

objective

Gradient updates only have the desired properties in a small region
around previous parameters θt . Control locality by step-size η.

Gradient descent is slow: For relatively small step in the right
direction, all of training data has to be processed.

This version of gradient descent is often also called batch gradient
descent.
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Stochastic Gradient Descent (SGD)

Batch gradient descent is slow: For relatively small step in the right
direction, all of training data has to be processed.

θt+1 ← θt + η∇θ
m∑
i=1

log p(yi |xi ;θ)

Stochastic gradient descent in a nutshell:
I For each update, only use random sample Bt of training data

(mini-batch).

θt+1 ← θt + η∇θ

∑
i∈Bt

log p(yi |xi ;θ)

I Mini-batch size can also just be 1.

θt+1 ← θt + η∇θ log p(yt |xt ;θ)

⇒ More frequent updates.
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Stochastic Gradient Descent (SGD)

The actual gradient is approximated using only a sub-sample of the
data.

For objective functions that are highly non-convex, the random
deviations of these approximations may even help to escape local
minima.

Treat batch size and learning rate as hyper-parameter.
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Deep Feedforward Networks

Function approximation: find good mapping ŷ = f (x;θ)

Network: Composition of functions f (1), f (2), f (3) with
multi-dimensional input and output

Each f (i) represents one layer f (x) = f (1)(f (2)(f (3)(x))))

Feedforward:

I Input → intermediate representation → output
I No feedback connections
I Cf. recurrent networks
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Deep Feedforward Networks: Training

Loss function defined on output layer, e.g. ||ŷ − f (x;θ)||12
Quality criterion on other layers not directly defined.

Training algorithm must decide how to use those layers most
effectively (w.r.t. loss on output layer)

Non-output layers can be viewed as providing a feature function φ(x)
of the input, that is to be learned.
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“Neural” Networks

Inspired by biological neurons (nerve cells)

Neurons are connected to each other, and receive and send electrical
pulses.

“If the [input] voltage changes by a large enough amount, an
all-or-none electrochemical pulse called an action potential is
generated, which travels rapidly along the cell’s axon, and activates
synaptic connections with other cells when it arrives.” (Wikipedia)
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Activation Functions with Non-Linearities

Linear Functions are limited in what they can express.

Famous example: XOR

Simple layered non-linear functions can represent XOR.
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Design Choices for Output Units

Typically can be interpreted as probabilities.
I Logistic sigmoid
I Softmax
I mean and variance of a Gaussian, ...

Trained with negative log-likelihood.
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Softmax

Logistic sigmoid

I Vector y of binary outcomes, with no contraints on how many can be 1.
I Bernoulli distribution.

Softmax
I Exactly one element of y is 1.
I Multinoulli (categorical) distribution.

p(Y = i |φ(x))∑
i

p(Y = i |φ(x)) = 1

softmax(z)i =
exp(zi )∑
j exp(zj)
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Parametrizing a Gaussian Distribution

Use final layer to predict parameters of Gaussian mixture model.

Weight of mixture component: softmax.

Means: no non-linearity.

Precisions ( 1
σ2 ) need to be positive: softplus

softplus(z) = ln(1 + exp(z))
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Rectified Linear Units

Rectified Linear Unit:

relu(z) = max(0, z)

z = xTw + b

Consistent gradient of 1 when unit is active (i.e. if there is an error to
propagate).

Default choice for hidden units.
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A Simple ReLU Network to Solve XOR

f (x;W, c,w) = wTmax(0,WTx + c)

W =

[
1 1
1 1

]

c =

[
0
−1

]

w =

[
1
−2

]
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Other Choices for Hidden Units

A good activation function aids learning, and provides large gradients.

Sigmoidal functions (logistic sigmoid)
I have only a small region before they flatten out in either direction.
I Practice shows that this seems to be ok in conjunction with Log-loss

objective.
I But they don’t work as well as hidden units.
I ReLU are better alternative since gradient stays constant.

Other hidden unit functions:
I maxout: take maximum of several values in previous layer.
I purely linear: can serve as low-rank approximation.
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Forward propagation: Input information x propagates through
network to produce output ŷ (and cost J(θ) in training)

Back-propagation:
I compute gradient w.r.t. model parameters
I Cost gradient propagates backwards through the network

Back-propagation is part of learning procedure (e.g. stochastic
gradient descent), not learning procedure in itself.
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Chain Rule of Calculus: Real Functions

Let
x , y , z ∈ R

f , g : R→ R

y = g(x)

z = f (g(x)) = f (y)

Then
dz

dx
=

dz

dy

dy

dx
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Chain Rule of Calculus: Multivariate Functions

Let
x ∈ Rm, y ∈ Rn, z ∈ R

f : Rn → R

g : Rm → Rn

y = g(x)

z = f (g(x)) = f (y)

Then
∂z

∂xi
=

n∑
j=1

∂z

∂yj

∂yj
∂xi

In order to write this in vector notation, we need to define the
Jacobian matrix.
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Jacobian

The Jacobian matrix is the matrix of all first-order partial derivatives
of a vector-valued function.

J =
∂g(x)

∂x
=



∂g(x)1
∂x1

· · · ∂g(x)1
∂xm

∂g(x)2
∂x1

∂g(x)2
∂xm

...
. . .

...

∂g(x)n
∂x1

· · · ∂g(x)n
∂xm


How to write in terms of gradients?

We can write the chain rule as:

∇xz =

(
∂y

∂x

)T

∇yz
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Viewing the Network as a Graph

Nodes are function outputs (can be scalar or vector valued)

Arrows are inputs

Example: Scalar multiplication z = xy .

x yx

z

x× y
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Which Function?

x w

u

xT w

σ(u)

ŷ
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Graph with Cost

x w

u

xT w

σ(u)

ŷ

−log P( y∣ŷ )

L
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Which Function?

Parameter vectors can be converted to matrix as needed.

h w

u

hT w

σ (u)

ŷ

x V

max (0,u' )

Vx

u'
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Forward Pass

Green: known or computed.

h w

u

hT w

σ (u)

ŷ

x V

max (0,u' )

Vx

u'

−log P( y∣ŷ )
L
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Forward Pass

End of forward pass (some steps skipped).

h w

u

hT w

σ (u)

ŷ

x V

max (0,u' )

Vx

u'

−log P( y∣ŷ )
L
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Backward Pass

Red: gradient of cost computed for node.

h w

u

hT w

σ (u)

ŷ

x V

max (0,u' )

Vx

u'

−log P( y∣ŷ )
L dL

d ŷ
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Backward Pass

Red: gradient of cost computed for node.

h w

u

hT w

σ (u)

ŷ

x V

max (0,u' )

Vx

u'

−log P( y∣ŷ )
L dL

d ŷ

dL
d ŷ
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du
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Backward Pass

Red: gradient of cost computed for node.

h w

u

hT w

σ (u)

ŷ

x V

max (0,u' )

Vx

u'

−log P( y∣ŷ )
L dL

d ŷ

dL
d ŷ

d ŷ
du

dL
d ŷ

d ŷ
du

δu
δw

dL
d ŷ

d ŷ
du

δu
δh
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End of Backward Pass

We have the gradients for all parameters, let’s use them for SGD.

h w

u

hT w

σ (u)

ŷ

x V

max (0,u' )

Vx

u'

−log P( y∣ŷ )
L dL

d ŷ

dL
d ŷ

d ŷ
du

dL
d ŷ

d ŷ
du

δu
δw

dL
d ŷ

d ŷ
du

δu
δh

(
δh
δu '

)
T dL
d ŷ

d ŷ
du

δu
δh

(
δu '
δV

)
T

(
δh
δu '

)
T dL
d ŷ

d ŷ
du

δu
δh
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Summary

Gradient descent: Minimize loss by iteratively substracting gradient
from parameter vector.

Stochastic gradient descent: Approximate gradient by considering
small subsets of examples.

Regularization: penalize large parameter values, e.g. by adding
l2-norm of parameter vector.

Feedforward networks: layers of (non-linear) function compositions.

Output non-linearities: interpreted as probability densities (logistic
sigmoid, softmax, Gaussian)

Hidden layers: Rectified linear units (max(0, z))

Backpropagation: Compute gradient of cost w.r.t. parameters using
chain rule.
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Regularization

feature

prediction

x
x

x
x

x
x

x
x x

feature

prediction
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x

x
x

x
x

x
x x

feature

prediction

x
x

x
x

x
x

x
x x

Overfitting vs. underfitting

Regularization: Any modification to a learning algorithm for reducing
its generalization error but not its training error

Build a preference into ML algorithm for one solution in hypothesis
space over another

Solution space is still the same

Unpreferred solution is penalized: only chosen if there it fits training
data much better
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L2-Regularization

Large parameters → overfitting

σ(x) σ(2x) σ(100x)

Prefer models with smaller feature weights.

Popular regularizers:
I Penalize large L2 norm.
I Penalize large L1 norm (aka LASSO, induces sparsity)
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Regularization

Add term that penalizes large l2 norm.

The amount of penalty is controlled by a parameter λ
I Linear regression:

J(θ) = MSE (θ) +
λ

2
θTθ

I Logistic regression:

J(θ) = NLL(θ) +
λ

2
θTθ

From a Bayesian perspective, l2-regularization corresponds to a
Gaussian prior on the parameters.
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L2-Regularization

The surface of the objective function is now a combination of the
original cost, and the regularization penalty.
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L2-Regularization

Gradient of regularization term:

∇θ
λ

2
θTθ = λθ

Gradient descent for regularized cost function:

θt+1 := θt − η∇θ(NLL(θt) + λθT
t θt)

⇔

θt+1 := (1− ηλ)θt − η∇θNLL(θt)
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