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Convolutional Neural Networks (CNNs)

Technique from Computer Vision (e.g., object recognition in images)

Alternative to RNNs for many (not all) NLP tasks

General idea: Filter bank with N learnable filters
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Convolution with one filter

For now, assume we have only one filter

Move filter over input with step size (stride) s (here: 1)

At every position, multiply filter and input entries together
(elementwise), and sum the results into a single value
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Filter size: 2× 2

Input size: 3× 4

Benjamin Roth, Nina Poerner (CIS LMU München) Convolution and Pooling November 26, 2019 6 / 27



Building an edge detector filter

Assume that -1 means black and +1 means white

We want to build a filter that can detect diagonal edges where the
upper left side is dark and the lower right side is bright

= a filter that calculates a high positive number on windows that
look like this:

-3
-3
-3
-3
-3

-3
3

-3

3

-3

3

-3

3

-3
3

-3

3

-3

3

-3
3

-3

3

-3
3

How would the filter

react to this window?

In CNNs, the filters are not manually chosen, but learned with
gradient descent
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Convolution with one filter: Tensor sizes

Most images are not 2D but 3D
I 3rd dimension is # channels, e.g., RGB values
I image height × image width × # channels

As a consequence, each filter is also 3D
I filter height × filter width × # channels

The operation stays the same, with an additional summation over the
channel dimension
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Convolution with N filters

Apply N different filters of the same size → N matrices with the
same size

Stack the N matrices on top of each other → 3D tensor, where the
last dimension is N

Also known as a feature map

Feature map is slightly smaller than input (why?)

Because a filter of size k fits into an input of size h only h − k + 1
times

... unless we pad the input with zeros
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Convolution with N filters: Tensor sizes

Tensor sizes:
I Input 3D: input height × input width × # channels (if this is the first

layer, otherwise # filters of previous layer)
I Parameter tensor 4D: filter height × filter width × # channels ×

#filters
I Output 3D: input height* × input width* × #filters
I *height and width are slightly reduced by convolution unless we do

padding
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What does convolution do?

Contextualization: Feature vector computed for position (i , j)
contains info from (i −k, j −k) to (i +k, j +k) (where k is filter size).

Locality-preserving: In one convolution layer, info can travel no
further than k positions

Computer Vision: Many convolutional layers applied one after another

Typical nonlinearity between convolution layers: ReLU

With every layer, feature maps become more complex

Pixels → edges → shapes → small objects → bigger, compositional
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Convolution

Source: Computer science: The learning machines. Nature (2014).
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Pooling

Often applied between convolution steps

Divide feature map into “grid”

Combine vectors inside the same grid cell with some operator

Most popular: Average pooling, Max pooling

Max pooling: only select maximum value for each dimension

“Feature detector”, “Cat neuron fires”
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Convolution and Pooling: LeNet

LeCun et al. (1998). Gradient-based learning applied to document recognition.
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Convolution for NLP

Images have width and height, but text only has “width” (length)

→ We can discard the “height” dimension from our filters

Tensor sizes (in NLP):
I Input 2D: sentence length × # channels (word embedding size, or #

filters of previous convolution)
I Parameter tensor 3D: filter length × # channels × #filters
I Output 2D: sentence length* × #filters
I *length slightly reduced unless we do padding

Computer vision: 2D convolution (over height and width)

NLP: 1D convolution (over length)

Typically fewer convolutional layers than Computer Vision
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Pooling for NLP

Pooling between convolutional layers less frequently used than in
Computer Vision

After last convolutional layer: “global” pooling step

Calculate max/average over the entire sequence (“pooling over time”)
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Convolution and Pooling for NLP

I What is the unpadded input size (=length)? 6
I What is the padded input size? 8
I How many filters? 3
I How many input channels (=word vector dimensions)? 4
I What is the filter size (=filter width)? 3
I What stride (=step size)? 1
I What is the output size of the convolution operation? 6× 3
I What is the output size of the pooling operation? 3
I How many parameters have to be learned? 3× 3× 4 = 36
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Convolution and Pooling for NLP

Source: Zhang, Y., & Wallace, B. (2015). A Sensitivity Analysis of ConvNets for Sentence Classification.
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Convolution and Pooling for NLP

Source: Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification.
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# binary classifier, e.g., sentiment polarity

from keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense

from keras.models import Sequential

embedding = Embedding(input_dim = VOCAB_SIZE, output_dim = EMB_DIM)

conv_layer = Conv1D(filters = NUM_FILTERS, kernel_size = FILTER_WIDTH,

activation = "relu")

pool_layer = GlobalMaxPooling1D()

dense_layer = Dense(units = 1, activation = "sigmoid")

model = Sequential(layers = [emb_layer, conv_layer, pool_layer, dense_layer])

model.compile(loss = "binary_crossentropy", optimizer = "sgd")

X, Y = # load_data()

model.fit(X, Y)
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RNN vs. CNN

Range
I CNN: Cannot capture dependencies with range above k × L (where k is

filter width and L is the number of layers
I RNN: Can capture long-range dependencies

Information transport
I RNN: Must learn to “transport” salient information across many time

steps.
I CNN: No information transport across time, salient information

“fast-tracked” by global max pooling

Efficiency
I RNN: Sequential data processing → not parallelizable over time
I CNN: Input windows are independent from one another → highly

parallelizable over time
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RNN vs. CNN: Quiz

Given a task description, choose appropriate architecture!
I Task: predict the number of the main verb (sleep or sleeps)

F The cats, who were sitting on the map inside the house, [sleep/sleeps?]

I Which architecture should we use? RNN
I Task: predict the polarity of the review:

F [... many useless sentences ...] best book ever [... many useless
sentences ...]

I Which architecture should we use? CNN

Task: Machine Translation

Which architecture should we use?
I Intuitively RNN (because MT is all about long-range dependencies),

but ...
I Attention gives CNNs the ability to capture long-range dependencies,

while maintaining parallel processing (Gehring et al.)
I More about attention: Later in this course
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