
Attention in Neural Networks

Nina Poerner

December 5, 2018

Nina Poerner Attention in Neural Networks December 5, 2018 1 / 10

Why attention?

Limitation of CNN
I Can only capture local dependencies

Limitations of LSTM, GRU, etc.:
I Can capture long-range dependencies, but may find them difficult to

learn
I Sequential processing not parallelizable
I In Sequence2Sequence (Encoder-Decoder) architectures: Must fit all

source sentence info into a single fixed-size vector
F Fails when source sentence is very long
F Major issue in early NMT architectures
F Attention was first proposed for Sequence2Sequence / NMT

(Bahdanau et al. 2015)

Nina Poerner Attention in Neural Networks December 5, 2018 2 / 10

Why attention?

Limitation of CNN
I Can only capture local dependencies

Limitations of LSTM, GRU, etc.:
I Can capture long-range dependencies, but may find them difficult to

learn
I Sequential processing not parallelizable

I In Sequence2Sequence (Encoder-Decoder) architectures: Must fit all
source sentence info into a single fixed-size vector

F Fails when source sentence is very long
F Major issue in early NMT architectures
F Attention was first proposed for Sequence2Sequence / NMT

(Bahdanau et al. 2015)

Nina Poerner Attention in Neural Networks December 5, 2018 2 / 10

Why attention?

Limitation of CNN
I Can only capture local dependencies

Limitations of LSTM, GRU, etc.:
I Can capture long-range dependencies, but may find them difficult to

learn
I Sequential processing not parallelizable
I In Sequence2Sequence (Encoder-Decoder) architectures: Must fit all

source sentence info into a single fixed-size vector
F Fails when source sentence is very long
F Major issue in early NMT architectures
F Attention was first proposed for Sequence2Sequence / NMT

(Bahdanau et al. 2015)

Nina Poerner Attention in Neural Networks December 5, 2018 2 / 10

Reading Group: Bahdanau et al.

Nina Poerner Attention in Neural Networks December 5, 2018 3 / 10

Attention with one query vector

Query: q ∈ RDq

I vector of size Dq, Bahdanau: q = si−1

Keys: K ∈ RT×Dk

I matrix of size T × Dk , Bahdanau: K = h1 . . .hT x

Values: V ∈ RT×Dv

I matrix of size T × Dv , Bahdanau: V = h1 . . .hT x

Energy Function: e = f (q,K); e ∈ RT

I vector of size T
I form of f varies, e.g.

F dot product: e = qKT

F Bahdanau: multilayer perceptron

Attention: a = softmax(e)
I probability distribution over T

Output: o = aV; o ∈ RDv

I sum of the T value vectors weighted by attention

Nina Poerner Attention in Neural Networks December 5, 2018 4 / 10

Attention with one query vector

Query: q ∈ RDq

I vector of size Dq, Bahdanau: q = si−1

Keys: K ∈ RT×Dk

I matrix of size T × Dk , Bahdanau: K = h1 . . .hT x

Values: V ∈ RT×Dv

I matrix of size T × Dv , Bahdanau: V = h1 . . .hT x

Energy Function: e = f (q,K); e ∈ RT

I vector of size T
I form of f varies, e.g.

F dot product: e = qKT

F Bahdanau: multilayer perceptron

Attention: a = softmax(e)
I probability distribution over T

Output: o = aV; o ∈ RDv

I sum of the T value vectors weighted by attention

Nina Poerner Attention in Neural Networks December 5, 2018 4 / 10

Attention with one query vector

Query: q ∈ RDq

I vector of size Dq, Bahdanau: q = si−1

Keys: K ∈ RT×Dk

I matrix of size T × Dk , Bahdanau: K = h1 . . .hT x

Values: V ∈ RT×Dv

I matrix of size T × Dv , Bahdanau: V = h1 . . .hT x

Energy Function: e = f (q,K); e ∈ RT

I vector of size T
I form of f varies, e.g.

F dot product: e = qKT

F Bahdanau: multilayer perceptron

Attention: a = softmax(e)
I probability distribution over T

Output: o = aV; o ∈ RDv

I sum of the T value vectors weighted by attention

Nina Poerner Attention in Neural Networks December 5, 2018 4 / 10

Attention with one query vector

Query: q ∈ RDq

I vector of size Dq, Bahdanau: q = si−1

Keys: K ∈ RT×Dk

I matrix of size T × Dk , Bahdanau: K = h1 . . .hT x

Values: V ∈ RT×Dv

I matrix of size T × Dv , Bahdanau: V = h1 . . .hT x

Energy Function: e = f (q,K); e ∈ RT

I vector of size T
I form of f varies, e.g.

F dot product: e = qKT

F Bahdanau: multilayer perceptron

Attention: a = softmax(e)
I probability distribution over T

Output: o = aV; o ∈ RDv

I sum of the T value vectors weighted by attention

Nina Poerner Attention in Neural Networks December 5, 2018 4 / 10

Generalization 1: Multiple query vectors

Compute energy, attention and output vectors for multiple query
vectors (query matrix) in parallel!

Query: Q ∈ RT q×Dq

I matrix of size T q × Dq

Keys: K ∈ RT v×Dk

I matrix of size T v × Dk

Values: V ∈ RT v×Dv

I matrix of size T v × Dv

I T q may be different from T v , but the number of values must be equal
to number of keys (why?)

Energy Function: E = f (Q,K);E ∈ RT q×T v

I matrix of size T q × T v

Attention: A = softmax(E)
I Softmax over T v dimension
I For every query, one probability distribution over T v

Output: O = AV;O ∈ RT q×Dv

I For every query, one weighted sum over the value vectors

Nina Poerner Attention in Neural Networks December 5, 2018 5 / 10

Generalization 1: Multiple query vectors

Compute energy, attention and output vectors for multiple query
vectors (query matrix) in parallel!

Query: Q ∈ RT q×Dq

I matrix of size T q × Dq

Keys: K ∈ RT v×Dk

I matrix of size T v × Dk

Values: V ∈ RT v×Dv

I matrix of size T v × Dv

I T q may be different from T v , but the number of values must be equal
to number of keys (why?)

Energy Function: E = f (Q,K);E ∈ RT q×T v

I matrix of size T q × T v

Attention: A = softmax(E)
I Softmax over T v dimension
I For every query, one probability distribution over T v

Output: O = AV;O ∈ RT q×Dv

I For every query, one weighted sum over the value vectors

Nina Poerner Attention in Neural Networks December 5, 2018 5 / 10

Generalization 1: Multiple query vectors

Compute energy, attention and output vectors for multiple query
vectors (query matrix) in parallel!

Query: Q ∈ RT q×Dq

I matrix of size T q × Dq

Keys: K ∈ RT v×Dk

I matrix of size T v × Dk

Values: V ∈ RT v×Dv

I matrix of size T v × Dv

I T q may be different from T v , but the number of values must be equal
to number of keys (why?)

Energy Function: E = f (Q,K);E ∈ RT q×T v

I matrix of size T q × T v

Attention: A = softmax(E)
I Softmax over T v dimension
I For every query, one probability distribution over T v

Output: O = AV;O ∈ RT q×Dv

I For every query, one weighted sum over the value vectors

Nina Poerner Attention in Neural Networks December 5, 2018 5 / 10

Generalization 1: Multiple query vectors

Compute energy, attention and output vectors for multiple query
vectors (query matrix) in parallel!

Query: Q ∈ RT q×Dq

I matrix of size T q × Dq

Keys: K ∈ RT v×Dk

I matrix of size T v × Dk

Values: V ∈ RT v×Dv

I matrix of size T v × Dv

I T q may be different from T v , but the number of values must be equal
to number of keys (why?)

Energy Function: E = f (Q,K);E ∈ RT q×T v

I matrix of size T q × T v

Attention: A = softmax(E)
I Softmax over T v dimension
I For every query, one probability distribution over T v

Output: O = AV;O ∈ RT q×Dv

I For every query, one weighted sum over the value vectors

Nina Poerner Attention in Neural Networks December 5, 2018 5 / 10

Generalization 2: Multi-head attention
Given: Query, key and value matrices Q, K, V

Define 3n fully connected layers
Generate n sets of queries, n sets of keys and n sets of values

I Q1 = QWQ1, . . . ,Qn = QWQn

I K1 = KWK1, . . . ,Kn = KWKn

I V1 = VWV 1, . . . ,Vn = VWVn

Apply attention to every triple: O1, . . . ,On

Concatenate outputs along last axis: O = [O1|| . . . ||On]
Intuition: Different heads focus on different dependencies
Extremely parallelizable (every query in every head)

Image: Vaswani et al: Attention is all you need (2017, NIPS)

Nina Poerner Attention in Neural Networks December 5, 2018 6 / 10

Generalization 2: Multi-head attention
Given: Query, key and value matrices Q, K, V
Define 3n fully connected layers
Generate n sets of queries, n sets of keys and n sets of values

I Q1 = QWQ1, . . . ,Qn = QWQn

I K1 = KWK1, . . . ,Kn = KWKn

I V1 = VWV 1, . . . ,Vn = VWVn

Apply attention to every triple: O1, . . . ,On

Concatenate outputs along last axis: O = [O1|| . . . ||On]
Intuition: Different heads focus on different dependencies
Extremely parallelizable (every query in every head)

Image: Vaswani et al: Attention is all you need (2017, NIPS)

Nina Poerner Attention in Neural Networks December 5, 2018 6 / 10

Generalization 2: Multi-head attention
Given: Query, key and value matrices Q, K, V
Define 3n fully connected layers
Generate n sets of queries, n sets of keys and n sets of values

I Q1 = QWQ1, . . . ,Qn = QWQn

I K1 = KWK1, . . . ,Kn = KWKn

I V1 = VWV 1, . . . ,Vn = VWVn

Apply attention to every triple: O1, . . . ,On

Concatenate outputs along last axis: O = [O1|| . . . ||On]

Intuition: Different heads focus on different dependencies
Extremely parallelizable (every query in every head)

Image: Vaswani et al: Attention is all you need (2017, NIPS)

Nina Poerner Attention in Neural Networks December 5, 2018 6 / 10

Generalization 2: Multi-head attention
Given: Query, key and value matrices Q, K, V
Define 3n fully connected layers
Generate n sets of queries, n sets of keys and n sets of values

I Q1 = QWQ1, . . . ,Qn = QWQn

I K1 = KWK1, . . . ,Kn = KWKn

I V1 = VWV 1, . . . ,Vn = VWVn

Apply attention to every triple: O1, . . . ,On

Concatenate outputs along last axis: O = [O1|| . . . ||On]
Intuition: Different heads focus on different dependencies
Extremely parallelizable (every query in every head)

Image: Vaswani et al: Attention is all you need (2017, NIPS)

Nina Poerner Attention in Neural Networks December 5, 2018 6 / 10

Self-Attention

Queries, keys and values are derived from the same sequence of
vectors

E.g., given a sequence of hidden vectors H = h1 . . .hT
I Q = HWQ

I K = HWK

I V = HWV

The sequence attends to itself!

Can be built on top of an RNN, CNN

... or can even replace RNN, CNN completely (see next slice)

Nina Poerner Attention in Neural Networks December 5, 2018 7 / 10

Attention is all you need?

Transformer architecture: NMT architecture that is built with just
attention, no RNNs, CNNs

Can be used for Sequence2Sequence, but also language modeling,
text classification (as self-attention)

Nina Poerner Attention in Neural Networks December 5, 2018 8 / 10

Attention is all you need?

Problem 1: Transformer has no sense of relative or absolute positions
(why?)

Solution: Add position embeddings to word embeddings!
I Lookup table P of size (maxlen × embedding dim)
I First word mapped to p1, 7th word mapped to p7, etc.
I Trainable or deterministic (sinusoid embeddings)

Problem 2: Transformer must be deep in order to work → gradients
may explode

Solution 2: normalize activations after each layer

Problem 3: When decoding / language modeling, how can we keep
the model from attending to future input words?

Solution 3: Set eij = − inf where j > i (“masked attention”)

Can be difficult to train, sensitive to learning rate (Chen et al.)

Nina Poerner Attention in Neural Networks December 5, 2018 9 / 10

Attention is all you need?

Problem 1: Transformer has no sense of relative or absolute positions
(why?)

Solution: Add position embeddings to word embeddings!
I Lookup table P of size (maxlen × embedding dim)
I First word mapped to p1, 7th word mapped to p7, etc.
I Trainable or deterministic (sinusoid embeddings)

Problem 2: Transformer must be deep in order to work → gradients
may explode

Solution 2: normalize activations after each layer

Problem 3: When decoding / language modeling, how can we keep
the model from attending to future input words?

Solution 3: Set eij = − inf where j > i (“masked attention”)

Can be difficult to train, sensitive to learning rate (Chen et al.)

Nina Poerner Attention in Neural Networks December 5, 2018 9 / 10

Attention is all you need?

Problem 1: Transformer has no sense of relative or absolute positions
(why?)

Solution: Add position embeddings to word embeddings!
I Lookup table P of size (maxlen × embedding dim)
I First word mapped to p1, 7th word mapped to p7, etc.
I Trainable or deterministic (sinusoid embeddings)

Problem 2: Transformer must be deep in order to work → gradients
may explode

Solution 2: normalize activations after each layer

Problem 3: When decoding / language modeling, how can we keep
the model from attending to future input words?

Solution 3: Set eij = − inf where j > i (“masked attention”)

Can be difficult to train, sensitive to learning rate (Chen et al.)

Nina Poerner Attention in Neural Networks December 5, 2018 9 / 10

Attention is all you need?

Problem 1: Transformer has no sense of relative or absolute positions
(why?)

Solution: Add position embeddings to word embeddings!
I Lookup table P of size (maxlen × embedding dim)
I First word mapped to p1, 7th word mapped to p7, etc.
I Trainable or deterministic (sinusoid embeddings)

Problem 2: Transformer must be deep in order to work → gradients
may explode

Solution 2: normalize activations after each layer

Problem 3: When decoding / language modeling, how can we keep
the model from attending to future input words?

Solution 3: Set eij = − inf where j > i (“masked attention”)

Can be difficult to train, sensitive to learning rate (Chen et al.)

Nina Poerner Attention in Neural Networks December 5, 2018 9 / 10

Attention is all you need

Nina Poerner Attention in Neural Networks December 5, 2018 10 / 10

