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Why attention?

Limitation of CNN
I Can only capture local dependencies

Limitations of LSTM, GRU, etc.:
I Can capture long-range dependencies, but may find them difficult to

learn
I Sequential processing not parallelizable
I In Sequence2Sequence (Encoder-Decoder) architectures: Must fit all

source sentence info into a single fixed-size vector
F Fails when source sentence is very long
F Major issue in early NMT architectures
F Attention was first proposed for Sequence2Sequence / NMT

(Bahdanau et al. 2015)
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Reading Group: Bahdanau et al.
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Attention with one query vector

Query: q ∈ RDq

I vector of size Dq, Bahdanau: q = si−1

Keys: K ∈ RT×Dk

I matrix of size T × Dk , Bahdanau: K = h1 . . .hT x

Values: V ∈ RT×Dv

I matrix of size T × Dv , Bahdanau: V = h1 . . .hT x

Energy Function: e = f (q,K); e ∈ RT

I vector of size T
I form of f varies, e.g.

F dot product: e = qKT

F Bahdanau: multilayer perceptron

Attention: a = softmax(e)
I probability distribution over T

Output: o = aV; o ∈ RDv

I sum of the T value vectors weighted by attention
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Generalization 1: Multiple query vectors

Compute energy, attention and output vectors for multiple query
vectors (query matrix) in parallel!

Query: Q ∈ RT q×Dq

I matrix of size T q × Dq

Keys: K ∈ RT v×Dk

I matrix of size T v × Dk

Values: V ∈ RT v×Dv

I matrix of size T v × Dv

I T q may be different from T v , but the number of values must be equal
to number of keys (why?)

Energy Function: E = f (Q,K);E ∈ RT q×T v

I matrix of size T q × T v

Attention: A = softmax(E)
I Softmax over T v dimension
I For every query, one probability distribution over T v

Output: O = AV;O ∈ RT q×Dv

I For every query, one weighted sum over the value vectors
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Generalization 2: Multi-head attention
Given: Query, key and value matrices Q, K, V

Define 3n fully connected layers
Generate n sets of queries, n sets of keys and n sets of values

I Q1 = QWQ1, . . . ,Qn = QWQn

I K1 = KWK1, . . . ,Kn = KWKn

I V1 = VWV 1, . . . ,Vn = VWVn

Apply attention to every triple: O1, . . . ,On

Concatenate outputs along last axis: O = [O1|| . . . ||On]
Intuition: Different heads focus on different dependencies
Extremely parallelizable (every query in every head)

Image: Vaswani et al: Attention is all you need (2017, NIPS)
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Self-Attention

Queries, keys and values are derived from the same sequence of
vectors

E.g., given a sequence of hidden vectors H = h1 . . .hT
I Q = HWQ

I K = HWK

I V = HWV

The sequence attends to itself!

Can be built on top of an RNN, CNN

... or can even replace RNN, CNN completely (see next slice)
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Attention is all you need?

Transformer architecture: NMT architecture that is built with just
attention, no RNNs, CNNs

Can be used for Sequence2Sequence, but also language modeling,
text classification (as self-attention)
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Attention is all you need?

Problem 1: Transformer has no sense of relative or absolute positions
(why?)

Solution: Add position embeddings to word embeddings!
I Lookup table P of size (maxlen × embedding dim)
I First word mapped to p1, 7th word mapped to p7, etc.
I Trainable or deterministic (sinusoid embeddings)

Problem 2: Transformer must be deep in order to work → gradients
may explode

Solution 2: normalize activations after each layer

Problem 3: When decoding / language modeling, how can we keep
the model from attending to future input words?

Solution 3: Set eij = − inf where j > i (“masked attention”)

Can be difficult to train, sensitive to learning rate (Chen et al.)
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Attention is all you need
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