Attention in Neural Networks

Nina Poerner

December 5, 2018

3

-

Image: A match a ma

Why attention?

Limitation of CNN

Can only capture local dependencies

___ ▶

Why attention?

- Limitation of CNN
 - Can only capture local dependencies
- Limitations of LSTM, GRU, etc.:
 - Can capture long-range dependencies, but may find them difficult to learn
 - Sequential processing not parallelizable

Why attention?

- Limitation of CNN
 - Can only capture local dependencies
- Limitations of LSTM, GRU, etc.:
 - Can capture long-range dependencies, but may find them difficult to learn
 - Sequential processing not parallelizable
 - In Sequence2Sequence (Encoder-Decoder) architectures: Must fit all source sentence info into a single fixed-size vector
 - ★ Fails when source sentence is very long
 - ★ Major issue in early NMT architectures
 - ★ Attention was first proposed for Sequence2Sequence / NMT (Bahdanau et al. 2015)

Reading Group: Bahdanau et al.

< (T) > <

э

- Query: $\mathbf{q} \in \mathbb{R}^{D^q}$
 - vector of size D^q , Bahdanau: $\mathbf{q} = \mathbf{s}_{i-1}$
- Keys: $\mathbf{K} \in \mathbb{R}^{T \times D^k}$
 - matrix of size $T \times D^k$, Bahdanau: $\mathbf{K} = \mathbf{h}_1 \dots \mathbf{h}_{T^*}$
- Values: $\mathbf{V} \in \mathbb{R}^{T \times D^{v}}$
 - matrix of size $T \times D^{\nu}$, Bahdanau: $\mathbf{V} = \mathbf{h}_1 \dots \mathbf{h}_{T^{\star}}$

- Query: $\mathbf{q} \in \mathbb{R}^{D^q}$
 - vector of size D^q , Bahdanau: $\mathbf{q} = \mathbf{s}_{i-1}$
- Keys: $\mathbf{K} \in \mathbb{R}^{T \times D^k}$
 - matrix of size $T \times D^k$, Bahdanau: $\mathbf{K} = \mathbf{h}_1 \dots \mathbf{h}_{T^{\times}}$
- Values: $\mathbf{V} \in \mathbb{R}^{T \times D^{v}}$
 - matrix of size $T \times D^{\nu}$, Bahdanau: $\mathbf{V} = \mathbf{h}_1 \dots \mathbf{h}_{T^{\times}}$
- Energy Function: $\mathbf{e} = f(\mathbf{q}, \mathbf{K}); \mathbf{e} \in \mathbb{R}^T$
 - vector of size T
 - form of f varies, e.g.
 - ***** dot product: $\mathbf{e} = \mathbf{q}\mathbf{K}^T$
 - ★ Bahdanau: multilayer perceptron

- Query: $\mathbf{q} \in \mathbb{R}^{D^q}$
 - vector of size D^q , Bahdanau: $\mathbf{q} = \mathbf{s}_{i-1}$
- Keys: $\mathbf{K} \in \mathbb{R}^{T \times D^k}$
 - matrix of size $T \times D^k$, Bahdanau: $\mathbf{K} = \mathbf{h}_1 \dots \mathbf{h}_{T^{\times}}$
- Values: $\mathbf{V} \in \mathbb{R}^{T \times D^{v}}$
 - matrix of size $T \times D^{\nu}$, Bahdanau: $\mathbf{V} = \mathbf{h}_1 \dots \mathbf{h}_{T^{\star}}$
- Energy Function: $\mathbf{e} = f(\mathbf{q}, \mathbf{K}); \mathbf{e} \in \mathbb{R}^T$
 - vector of size T
 - ▶ form of *f* varies, e.g.
 - ***** dot product: $\mathbf{e} = \mathbf{q}\mathbf{K}^T$
 - ★ Bahdanau: multilayer perceptron
- Attention: **a** = softmax(**e**)
 - probability distribution over T

- 3

- Query: $\mathbf{q} \in \mathbb{R}^{D^q}$
 - vector of size D^q , Bahdanau: $\mathbf{q} = \mathbf{s}_{i-1}$
- Keys: $\mathbf{K} \in \mathbb{R}^{T \times D^k}$
 - matrix of size $T \times D^k$, Bahdanau: $\mathbf{K} = \mathbf{h}_1 \dots \mathbf{h}_{T^*}$
- Values: $\mathbf{V} \in \mathbb{R}^{T \times D^{v}}$
 - matrix of size $T \times D^{\nu}$, Bahdanau: $\mathbf{V} = \mathbf{h}_1 \dots \mathbf{h}_{T^{\star}}$
- Energy Function: $\mathbf{e} = f(\mathbf{q}, \mathbf{K}); \mathbf{e} \in \mathbb{R}^T$
 - vector of size T
 - ▶ form of *f* varies, e.g.
 - ***** dot product: $\mathbf{e} = \mathbf{q}\mathbf{K}^T$
 - ★ Bahdanau: multilayer perceptron
- Attention: **a** = softmax(**e**)
 - probability distribution over T
- Output: $\mathbf{o} = \mathbf{aV}; \mathbf{o} \in \mathbb{R}^{D^{v}}$
 - sum of the T value vectors weighted by attention

- 3

- Compute energy, attention and output vectors for multiple query vectors (query matrix) in parallel!
- Query: $\mathbf{Q} \in \mathbb{R}^{T^q \times D^q}$
 - matrix of size $T^q \times D^q$
- Keys: $\mathbf{K} \in \mathbb{R}^{T^{v} \times D^{k}}$
 - matrix of size $T^{v} \times D^{k}$
- Values: $\mathbf{V} \in \mathbb{R}^{T^{v} \times D^{v}}$
 - matrix of size $T^{v} \times D^{v}$
 - ► T^q may be different from T^v, but the number of values must be equal to number of keys (why?)

- Compute energy, attention and output vectors for multiple query vectors (query matrix) in parallel!
- Query: $\mathbf{Q} \in \mathbb{R}^{T^q \times D^q}$
 - matrix of size $T^q \times D^q$
- Keys: $\mathbf{K} \in \mathbb{R}^{T^{v} \times D^{k}}$
 - matrix of size $T^{v} \times D^{k}$
- Values: $\mathbf{V} \in \mathbb{R}^{T^{v} \times D^{v}}$
 - matrix of size $T^{v} \times D^{v}$
 - ► T^q may be different from T^v, but the number of values must be equal to number of keys (why?)
- Energy Function: $\mathbf{E} = f(\mathbf{Q}, \mathbf{K})$; $\mathbf{E} \in \mathbb{R}^{T^q \times T^v}$
 - matrix of size $T^q \times T^v$

- Compute energy, attention and output vectors for multiple query vectors (query matrix) in parallel!
- Query: $\mathbf{Q} \in \mathbb{R}^{T^q \times D^q}$
 - matrix of size $T^q \times D^q$
- Keys: $\mathbf{K} \in \mathbb{R}^{T^{v} \times D^{k}}$
 - matrix of size $T^{v} \times D^{k}$
- Values: $\mathbf{V} \in \mathbb{R}^{T^{v} \times D^{v}}$
 - matrix of size $T^{\nu} \times D^{\nu}$
 - ► T^q may be different from T^v, but the number of values must be equal to number of keys (why?)
- Energy Function: $\mathbf{E} = f(\mathbf{Q}, \mathbf{K})$; $\mathbf{E} \in \mathbb{R}^{T^q \times T^v}$
 - matrix of size $T^q \times T^v$
- Attention: **A** = softmax(**E**)
 - Softmax over T^v dimension
 - For every query, one probability distribution over T^{v}

- Compute energy, attention and output vectors for multiple query vectors (query matrix) in parallel!
- Query: $\mathbf{Q} \in \mathbb{R}^{T^q \times D^q}$
 - matrix of size $T^q \times D^q$
- Keys: $\mathbf{K} \in \mathbb{R}^{T^{v} \times D^{k}}$
 - matrix of size $T^{v} \times D^{k}$
- Values: $\mathbf{V} \in \mathbb{R}^{T^{v} \times D^{v}}$
 - matrix of size $T^{v} \times D^{v}$
 - ► T^q may be different from T^v, but the number of values must be equal to number of keys (why?)
- Energy Function: $\mathbf{E} = f(\mathbf{Q}, \mathbf{K})$; $\mathbf{E} \in \mathbb{R}^{T^q \times T^v}$
 - matrix of size $T^q \times T^v$
- Attention: **A** = softmax(**E**)
 - Softmax over T^{v} dimension
 - For every query, one probability distribution over T^{v}
- Output: $\mathbf{O} = \mathbf{AV}; \mathbf{O} \in \mathbb{R}^{T^q \times D^v}$
 - For every query, one weighted sum over the value vectors

- 31

• Given: Query, key and value matrices Q, K, V

___ ▶

- Given: Query, key and value matrices Q, K, V
- Define 3n fully connected layers
- Generate *n* sets of queries, *n* sets of keys and *n* sets of values

$$\bullet \mathbf{Q}^1 = \mathbf{Q}\mathbf{W}^{Q1}, \dots, \mathbf{Q}^n = \mathbf{Q}\mathbf{W}^{Qn}$$

$$\blacktriangleright \mathbf{K}^1 = \mathbf{K}\mathbf{W}^{K1}, \dots, \mathbf{K}^n = \mathbf{K}\mathbf{W}^{Kn}$$

$$\blacktriangleright \mathbf{V}^1 = \mathbf{V}\mathbf{W}^{V1}, \dots, \mathbf{V}^n = \mathbf{V}\mathbf{W}^{Vn}$$

- Given: Query, key and value matrices Q, K, V
- Define 3n fully connected layers
- Generate *n* sets of queries, *n* sets of keys and *n* sets of values

•
$$\mathbf{Q}^1 = \mathbf{Q}\mathbf{W}^{Q1}, \dots, \mathbf{Q}^n = \mathbf{Q}\mathbf{W}^{Qn}$$

$$\mathbf{K}^{1} = \mathbf{K}\mathbf{W}^{K1}, \dots, \mathbf{K}^{n} = \mathbf{K}\mathbf{W}^{Kn}$$

$$\mathbf{V}^1 = \mathbf{V}\mathbf{W}^{V1}, \dots, \mathbf{V}^n = \mathbf{V}\mathbf{W}^{Vn}$$

- Apply attention to every triple: $\mathbf{O}^1, \dots, \mathbf{O}^n$
- Concatenate outputs along last axis: $\mathbf{O} = [\mathbf{O}^1 || \dots || \mathbf{O}^n]$

- Given: Query, key and value matrices Q. K. V
- Define 3n fully connected layers
- Generate *n* sets of queries, *n* sets of keys and *n* sets of values
 - $\mathbf{Q}^{1} = \mathbf{Q}\mathbf{W}^{Q1}, \dots, \mathbf{Q}^{n} = \mathbf{Q}\mathbf{W}^{Qn}$ $\mathbf{K}^{1} = \mathbf{K}\mathbf{W}^{K1}, \dots, \mathbf{K}^{n} = \mathbf{K}\mathbf{W}^{Kn}$ $\mathbf{V}^{1} = \mathbf{V}\mathbf{W}^{V1}, \dots, \mathbf{V}^{n} = \mathbf{V}\mathbf{W}^{Vn}$
- Apply attention to every triple: $\mathbf{O}^1, \ldots, \mathbf{O}^n$
- Concatenate outputs along last axis: $\mathbf{O} = [\mathbf{O}^1 || \dots || \mathbf{O}^n]$
- Intuition: Different heads focus on different dependencies
- Extremely parallelizable (every query in every head)

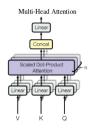


Image: Vaswani et al: Attention is all you need (2017, NIPS)

Self-Attention

- Queries, keys and values are derived from the same sequence of vectors
- E.g., given a sequence of hidden vectors $\mathbf{H} = \mathbf{h}_1 \dots \mathbf{h}_T$
 - $\blacktriangleright \mathbf{Q} = \mathbf{H}\mathbf{W}^{Q}$
 - $\mathbf{K} = \mathbf{HW}^{K}$
 - $V = HW^V$
- The sequence attends to itself!
- Can be built on top of an RNN, CNN
- ... or can even replace RNN, CNN completely (see next slice)

- Transformer architecture: NMT architecture that is built with just attention, no RNNs, CNNs
- Can be used for Sequence2Sequence, but also language modeling, text classification (as self-attention)

- Problem 1: Transformer has no sense of relative or absolute positions (why?)
- Solution: Add position embeddings to word embeddings!
 - Lookup table P of size (maxlen × embedding dim)
 - First word mapped to p_1 , 7th word mapped to p_7 , etc.
 - Trainable or deterministic (sinusoid embeddings)

- Problem 1: Transformer has no sense of relative or absolute positions (why?)
- Solution: Add position embeddings to word embeddings!
 - Lookup table P of size (maxlen × embedding dim)
 - ▶ First word mapped to *p*₁, 7th word mapped to *p*₇, etc.
 - Trainable or deterministic (sinusoid embeddings)
- \bullet Problem 2: Transformer must be deep in order to work \rightarrow gradients may explode
- Solution 2: normalize activations after each layer

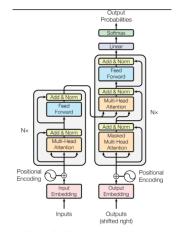
- Problem 1: Transformer has no sense of relative or absolute positions (why?)
- Solution: Add position embeddings to word embeddings!
 - Lookup table P of size (maxlen × embedding dim)
 - First word mapped to p₁, 7th word mapped to p₇, etc.
 - Trainable or deterministic (sinusoid embeddings)
- \bullet Problem 2: Transformer must be deep in order to work \rightarrow gradients may explode
- Solution 2: normalize activations after each layer
- Problem 3: When decoding / language modeling, how can we keep the model from attending to future input words?
- Solution 3: Set $e_{ij} = -\inf \text{ where } j > i \text{ ("masked attention")}$

イロト イポト イヨト イヨト 二日

- Problem 1: Transformer has no sense of relative or absolute positions (why?)
- Solution: Add position embeddings to word embeddings!
 - Lookup table P of size (maxlen × embedding dim)
 - First word mapped to p₁, 7th word mapped to p₇, etc.
 - Trainable or deterministic (sinusoid embeddings)
- \bullet Problem 2: Transformer must be deep in order to work \rightarrow gradients may explode
- Solution 2: normalize activations after each layer
- Problem 3: When decoding / language modeling, how can we keep the model from attending to future input words?
- Solution 3: Set $e_{ij} = -\inf \text{ where } j > i \text{ ("masked attention")}$
- Can be difficult to train, sensitive to learning rate (Chen et al.)

- 3

イロト 人間ト イヨト イヨト



Nina Po	

э

イロト イポト イヨト イヨト