
Attention in Neural Networks

Nina Poerner

December 11, 2019

Nina Poerner Attention in Neural Networks December 11, 2019 1 / 42

Why attention?

Limitation of CNN
I Can only capture local dependencies

Limitations of LSTM, GRU, etc.:
I Can capture long-range dependencies, but may find them difficult to

learn
I Sequential processing not parallelizable
I In Sequence2Sequence (Encoder-Decoder) architectures: Must fit all

source sentence info into a single fixed-size vector
F Fails when source sentence is very long
F Major issue in early NMT architectures
F Attention was first proposed for Sequence2Sequence / NMT

(Bahdanau et al. 2015)

Nina Poerner Attention in Neural Networks December 11, 2019 2 / 42

Attention: The basic formula

Ingredients:

One query vector: q ∈ Rdq

T key vectors: K ∈ RT×dk

T value vectors: V ∈ RT×dv

Scoring function f : Rdq × Rdk → R
I Maps a query-key pair to a scalar (“score”)
I f may be parametrized by parameters θf

Nina Poerner Attention in Neural Networks December 11, 2019 3 / 42

Attention: The basic formula

Step 1: Apply f to q and all keys kt to get T scores (one per key):

e =

e1...
eT

 =

f (q, k1)
...

f (q, kT)


I Question: What is the range of et? (−∞,∞)

Step 2: Turn e into probabilities... how? Softmax!

αt =
exp(et)∑
t′ exp(et′)

Step 3: α-weighted sum over V

o =
T∑
t=1

αtvt

I Question: What is the shape of o? Rdv

Nina Poerner Attention in Neural Networks December 11, 2019 4 / 42

Any questions?

Nina Poerner Attention in Neural Networks December 11, 2019 5 / 42

Bahdanau et al. (2015)

Machine Translation

Source sentence: [x1 . . . xTx]

Target sentence: [y1 . . . yTy]

Encode [x1 . . . xTx] with encoder RNN: [h1 . . .hTx]

Nina Poerner Attention in Neural Networks December 11, 2019 6 / 42

Bahdanau et al. (2015)

Bahdanau et al. (2015), ICLR

What architecture is this? GRU

Which variables are gates? zi , ri

Which variable is the candidate vector? s̃i

Which variables are the trainable parameters?
E,W,U,C,Wz ,Uz ,Cz ,Wr ,Ur ,Cr

What is si−1? Previous hidden state

What is yi−1? Previous correct word (teacher forcing)

Extra term: ci
Nina Poerner Attention in Neural Networks December 11, 2019 7 / 42

Bahdanau et al. (2015)

Bahdanau et al. (2015), ICLR

Which equation corresponds to which step from the basic formula?

Which variable corresponds to the query vector? q = si−1
Which variables are the key vectors? K = [h1 . . .hTx]

Which variables are the value vectors? V = [h1 . . .hTx]

Which variable is the output? o = ci
Nina Poerner Attention in Neural Networks December 11, 2019 8 / 42

Bahdanau et al. (2015)

Scoring function:

Bahdanau et al. (2015), ICLR (appendix)

With additional trainable parameters va,Ua,Wa

Nina Poerner Attention in Neural Networks December 11, 2019 9 / 42

What does attention do?

Bahdanau et al. (2015), ICLR, Figure 3. Black is αi,j = 0, white is αi,j = 1

Nina Poerner Attention in Neural Networks December 11, 2019 10 / 42

Bahdanau et al. (2015), ICLR, Figure 2

Nina Poerner Attention in Neural Networks December 11, 2019 11 / 42

Important to note: The Bahdanau model is still an RNN, just with
attention on top.

Do we actually need the RNN?

Nina Poerner Attention in Neural Networks December 11, 2019 12 / 42

Any questions?

Nina Poerner Attention in Neural Networks December 11, 2019 13 / 42

Self-Attention

Input X ∈ RT×dx ;X = [x1 . . . xT]

Trainable linear layers (parameters) θ = (W(q),W(k),W(v))

Transform X into
I query matrix Q ∈ RT×dq ;Q = XW(q)

I key matrix K ∈ RT×dk ;K = XW(k)

I value matrix V ∈ RT×dv ;V = XW(v)

Nina Poerner Attention in Neural Networks December 11, 2019 14 / 42

Self-Attention with a loop

Q ∈ RT×dq ,K ∈ RT×dk ,V ∈ RT×dv

For every time step t:
I Apply the basic attention formula to (qt ,K,V)
I Let’s call the output ot

Stack all ot into output matrix O

Question: What is the shape of O? RT×dv

Nina Poerner Attention in Neural Networks December 11, 2019 15 / 42

Any questions?

Nina Poerner Attention in Neural Networks December 11, 2019 16 / 42

Self-Attention parallelized

ot does not depend on ot−1 (or any other ot′ 6=t)

We can parallelize the loop (unlike an RNN!)

Scaled dot product scoring function (instead of Bahdanau’s
complicated function):

f (q, k) =
qTk√
dk

dq must be equal to dk ... why?

Note: We could also use more complicated scoring functions in
parallel, it would just be more difficult to write down.

Nina Poerner Attention in Neural Networks December 11, 2019 17 / 42

Self-Attention parallelized

Step 1: E = QKT
√
dk

↓
queries
↓

→keys→e1,1 . . . e1,T
...

. . .
...

eT ,1 . . . eT ,T

 =
1√
dk

− q1 −
...

− qT −


 | |
k1 . . . kT
| |


What is the dimensionality of E? RT×T

Step 2: Softmax

Which axis of E should we normalize over? The rows (i.e., the keys)

αt,t′ =
exp(et,t′)∑T

t′′=1 exp(et,t′′)

Let’s call this new normalized matrix A = softmax(E)

The rows αt of A are probability distributions

Nina Poerner Attention in Neural Networks December 11, 2019 18 / 42

Step 3: Weighted sum
O = AV

↓
queries
↓

→dv (value dims)→o1,1 . . . o1,dv
...

. . .
...

oT ,1 . . . oT ,dv

 =

− α1 −
...

− αT −


 | |
v:,1 . . . v:,dv
| |



Scaled dot-product Self-Attention as a one-liner:

O = softmax
((XW(q))(XW(k))T√

dk

)
(XW(v))

(where the softmax is over the second axis)

Nina Poerner Attention in Neural Networks December 11, 2019 19 / 42

Any questions?

Nina Poerner Attention in Neural Networks December 11, 2019 20 / 42

Is (Self-)Attention all you need?

A Neural Network takes as input a sequence of word2vec vectors (as
matrix X) and transforms them with self-attention into a matrix O

We feed the NN with X1 = [w(space),w(ship)] and get O1

We feed the NN with X2 = [w(ship),w(space)] and get O2

I Is there a difference between x1,1 and x2,2?
I No, because x1,1 = w(space) = x2,2

I Question: Is there a difference between o1,1 and o2,2?

I Question: Would it help to apply another layer of self attention?

Nina Poerner Attention in Neural Networks December 11, 2019 21 / 42

Is (Self-)Attention all you need?

Nina Poerner Attention in Neural Networks December 11, 2019 22 / 42

Position embeddings

Add to every input word embedding a position embedding p:

Representation of word “space” in position t: xt = w(space) + pt

w(space) + p1 6= w(space) + p2

Option 1: Trainable position embeddings: P ∈ RTmax×d

I Disadvantage: Cannot deal with inputs longer than Tmax

Option 2: Sinusoidal position embeddings (deterministic):

pt,i =

{
sin(wk · t) if i = 2k (even)

cos(wk · t) if i = 2k + 1 (odd)
;wk =

1

10000
2k
d

Nina Poerner Attention in Neural Networks December 11, 2019 23 / 42

Sinusoidal position embeddings

https://kazemnejad.com/blog/transformer architecture positional encoding

Nina Poerner Attention in Neural Networks December 11, 2019 24 / 42

Sinusoidal position embeddings

Pairwise dot products of sinusoidal position embeddings

https://kazemnejad.com/blog/transformer architecture positional encoding

Nina Poerner Attention in Neural Networks December 11, 2019 25 / 42

Any questions?

Nina Poerner Attention in Neural Networks December 11, 2019 26 / 42

Multi-head self-attention
Before:

I We have parameters θ = (W(Q),W(K),W(V))
I We use θ to transform X into (Q,K,V)
I O = selfattention(Q,K,V)

Now:
I N sets of parameters {θ1, . . . , θN}, with θn = (W

(Q)
n ,W

(K)
n ,W

(V)
n)

I For every 1 ≤ n ≤ N (every “head”):
F Use θn to transform X into (Qn,Kn,Vn)
F On = selfattention(Qn,Kn,Vn)

I Concatenate all On along last axis into output matrix O
I Final linear layer W(o) ∈ RNdv×d

(In reality, all heads are calculated in
parallel)

Conceptually like single filter vs.
multiple filters in CNN

Nina Poerner Attention in Neural Networks December 11, 2019 27 / 42

Masked Self-Attention

RNNs are “causal” models: they cannot look at future inputs

Self-Attention (in its basic form) is not causal

Without causal modeling, our models will cheat when doing Language
Modeling or MT Decoding

y y1 =the y2=cat y3=sits y4=on

o1 o2 o3 o4
self-attention

x x1 =<s> x2 =the x3 =cat x4 =sits

For instance, we don’t want o3 to get information about x4

“Getting information” means an attention weight > 0

Question: How can we set α3,4 = 0?

By setting e3,4 = −∞ (in practice: e3,4 = −10000)

Nina Poerner Attention in Neural Networks December 11, 2019 28 / 42

Masked Self-Attention

Calculate E like you usually would

Set ei ,j = −10000 for all illegal connections

e1,1 e1,2 e1,3
e2,1 e2,2 e2,3
e3,1 e3,2 e3,3

→
e1,1 −10000 −10000
e2,1 e2,2 −10000
e3,1 e3,2 e3,3


Not just useful for decoding, but also for ignoring padded inputs

Nina Poerner Attention in Neural Networks December 11, 2019 29 / 42

Any questions?

Nina Poerner Attention in Neural Networks December 11, 2019 30 / 42

Transformer Architecture

Vaswani et al (2017), NeurIPS

Nina Poerner Attention in Neural Networks December 11, 2019 31 / 42

Any questions?

Nina Poerner Attention in Neural Networks December 11, 2019 32 / 42

NLP since 2018

Pre-train (some sort of) Language Model on a big unlabeled corpus

Give the model the name of a Sesame Street character
I So far: ELMo, BERT, ERNIE, ERNIE 2.0, Kermit, Grover

Use it as initialization or feature extractor for other models

Nina Poerner Attention in Neural Networks December 11, 2019 33 / 42

BERT

Devlin et al. (2019): BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding

Almost 3000 citations in one year (that’s 8 a day)

Best long paper at NAACL 2019

Has been integrated into Google Search
https://www.blog.google/products/search/

search-language-understanding-bert/

Transformer Encoder Masked Language Model (with Next Sentence
Prediction) pre-trained on Wikipedia and some books

Masked Language Model 6= Masked Self-Attention

Nina Poerner Attention in Neural Networks December 11, 2019 34 / 42

https://www.blog.google/products/search/search-language-understanding-bert/
https://www.blog.google/products/search/search-language-understanding-bert/

The problem with bidirectional LMs

We said before that Language Models must be “causal” (i.e.,
unidirectional) so that they do not cheat

But we want a bidirectional model...

Option 1:
I Use two unidirectional models (left-to-right, right-to-left) and combine
←
o t−1,

→
o t+1 to predict yt (c.f., ELMo)

I Problem: The unidirectional models cannot communicate with each
other at their lower layers (without violating the causality), so this is
“shallow” bidirectionality

Devlin et al. (2019), NAACL

Nina Poerner Attention in Neural Networks December 11, 2019 35 / 42

Option 2:
I Use a fully bidirectional model and only predict one word t per

sentence, while setting e:,t = −10000
I Problem: This is inefficient. If our sentence has length 512, we must

see it 512 times to predict all words

Nina Poerner Attention in Neural Networks December 11, 2019 36 / 42

Masked Language Modeling (MLM)

Use a fully bidirectional model

In the input, replace some randomly chosen words (15%) with a
special [MASK] token.

Predict the identity of the [MASK] tokens

x = The cat [MASK] on the [MASK] .

y = sat, mat

Pro: No need to set any attention weights to zero.

Contra: Cannot learn conditional probabilities p(x1|x2), p(x2|x1) when
both x1 and x2 are masked

... but this does not seem to be an issue in practice, as the masking
patterns differ between epochs

Nina Poerner Attention in Neural Networks December 11, 2019 37 / 42

Next Sentence Prediction (NSP)

Second Loss function of BERT:

Given sentence s1 and s2, predict whether s2 follows s1
A bit like word2vec with negative sampling, just for sentences!

[CLS] The cat sat on the [MASK] . [SEP] Then it got up and [MASK]
a mouse. [SEP]

→ positive sample

[CLS] The cat [MASK] on the mat. [SEP] The police [MASK] . [SEP]

→ random (negative) sample

Lbert = Lmlm + Lnsp

Nina Poerner Attention in Neural Networks December 11, 2019 38 / 42

Using BERT

Pre-trained BERT is available through different libraries (huggingface,
tensorflow-hub)

BERT-base: 12 layers, 12 heads, hidden size 768

BERT-large: 24 layers, 16 heads, hidden size 1024

Usual workflow:
I Extract the embedding layer and 12 (or 24) Transformer layers
I Put a smaller model (e.g., a feed-forward layer) on top of layer 12 (or

24) to do some specific task (e.g., sentiment analysis, POS tagging...)
I Either: freeze BERT and train only your own model
I Or: finetune BERT and your model together

Assumption: Some of the features that were useful for language
modeling are also useful for your target task. BERT already knows
how to extract these features, so you don’t have to learn them from
scratch

Nina Poerner Attention in Neural Networks December 11, 2019 39 / 42

from transformers import BertForSequenceClassification, BertTokenizer

sentences = ["[CLS] Aweful movie! [SEP]"]

label_tensor = torch.tensor([0])

model = BertForSequenceClassification.from_pretrained("bert-base-cased",

num_labels = 5)

params = list(model.parameters())

len(params) 201

tokenizer = BertTokenizer.from_pretrained("bert-base-cased")

tokenized = [tokenizer.tokenize(sentence) for sentence in sentences]

tokenized [[’[CLS]’, ’A’, ’##we’, ’##ful’, ’movie’, ’!’, ’[SEP]’]]

input_ids = [tokenizer.convert_tokens_to_ids(tokens) for tokens in tokenized]

input_ids_tensor = torch.tensor(input_ids)

#input_ids_tensor tensor([[101, 138, 7921, 2365, 2523, 106, 102]])

logits = model(input_ids_tensor)[0]

logits tensor([[-0.4342, 0.7886, -0.6013, 1.0922, -0.1007]], grad_fn=<AddmmBackward>)

loss = torch.nn.CrossEntropyLoss()(logits, label_tensor)

loss tensor(2.2308, grad_fn=<NllLossBackward>)

loss.backward()

#params[6].grad.max() tensor(0.0292)

Nina Poerner Attention in Neural Networks December 11, 2019 40 / 42

Since BERT

Nina Poerner Attention in Neural Networks December 11, 2019 41 / 42

Relative position embeddings

A(k) ∈ R(2T+1)×dk (for keys)

A(v) ∈ R(2T+1)×dv (for values)
I Trainable lookup tables

A(∗) ∈ R(2T+1)×d∗

a1 . . . aT aT+1 aT+2 . . . a2T+1

t − t′ < 0 t − t′ = 0 t − t′ > 0

“query before key” “query is key” “key before query”

et,t′ = f (qt , kt′ , a
(k)
(T+1+t−t′))

With scaled dot product:

et,t′ =
qTt (kt′ + a

(k)
(T+1+t−t′))√
dk

ot =
∑T

t′=1 αt,t′(vt′ + a
(v)
(T+1+t−t′))

In practice: Limit T to some “clipping distance”.

If t − t ′ < −T , use a1.

If t − t ′ > T , use a(2T+1).

Nina Poerner Attention in Neural Networks December 11, 2019 42 / 42

	Attention
	Pre-trained Language Models (BERT)

