Introduction to Keras

Nina Poerner, Dr. Benjamin Roth

CIS LMU Miinchen

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras

Keras

Python-based Neural Network library with three backends:
» tensorflow, CNTK, Theano

Very high-level =~ does much of the hard work for you

... but powerful enough to implement interesting architectures

Little redundancy: Architectural details are inferred when possible
Reasonable defaults (e.g. weight matrix initialization).
Pre-implements many important layers, loss functions and optimizers

Easy to extend by defining custom layers, loss functions, etc.

Documentation: https://keras.io/

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras 4 /37

https://keras.io/

Keras vs. PyTorch

Keras PyTorch
graph definition static dynamic
defining simple NNs e e
defining complex NNs @) @)
training and evaluation e e
debugging + printing @ e

*The ignite package contains PyTorch-compatible callbacks

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras 5/37

Installation

conda install keras

or

pip3 install keras

or

git clone https://github.com/keras-team/keras
cd keras

python3 setup.py install

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras 6 /37

Choosing a backend

In most cases, your code should work with any of the three backends

Recommended: tensorflow

To change the backend temporarily, set environment variable before
executing any script:

KERAS_BACKEND=tensorflow

@ To change the backend permanently, edit ~/.keras/keras.json
{
"floatx": "float32",
"image_dim_ordering": "tf",
"epsilon": 1e-07,
"backend": "tensorflow"
}

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras 7 /37

The Sequential Model

@ Sequential: A model where every layer has exactly one input tensor
and one output tensor. (The name has nothing to do with RNNs!)

o Example: Multi-layer perceptron with input size 10, hidden size 20,
output size 1

from keras.models import Sequential
from keras.layers import Dense

model = Sequential()

hidden_layer = Dense(units = 20, input_shape = (10,), activation = "relu")
model .add (hidden_layer)

first layer needs an input_shape

output_layer = Dense(units = 1, activation = "sigmoid")
model.add(output_layer)
other layers can infer their input shape (why?)

print([w.shape for w in model.get_weights()])
[(to, 20), (20,), (20, 1), (1,)]
print (model.predict(np.random.random(size = (2,10))))
[[0.4927521]
[0.45954984]]

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras 9 /37

Defining a topic classifier in under 10 lines of code

from keras.layers import LSTM, Dense, Embedding
from keras.models import Sequential

VOCAB_SIZE, EMB_SIZE, HIDDEN_SIZE, NUM_TOPICS = 1000, 100, 200, 50
x = np.random.randint(size = (4, 80), low = O, high = VOCAB_SIZE))

model = Sequential()

embedding_layer = Embedding(input_dim = VOCAB_SIZE, output_dim = EMB_SIZE)
model.add(embedding_layer)

print (model.predict (x) .shape)

(4, 80, 100)

lstm_layer = LSTM(units = HIDDEN_SIZE)
model.add(lstm_layer)

print (model.predict (x) .shape)

(4, 200)

output_layer = Dense(units = NUM_TOPICS, activation = "softmax"))
model.add (output_layer)

print (model.predict (x) .shape)

(4, 50)

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras 10 / 37

Other useful layers

@ ConviD: 1D Convolution (for text)
@ Conv2D: 2D Convolution (for pictures)

@ Bidirectional wrapper: Applies RNNs bidirectionally:
layer = Bidirectional(GRU(units = HIDDEN_DIM))

@ TimeDistributed wrapper: Applies the same layer to all time steps
in parallel (e.g., for POS tagging)

layer = TimeDistributed(Dense(units = NUM_CLASSES, activation = "softmax"))

@ Dropout: Randomly sets n% of neurons to zero (a form of
regularization)

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras 11 /37

Compilation

@ compile adds loss function and optimizer to Neural Network

@ compile must be called before training

model.compile(loss = "categorical_crossentropy",
optimizer = "sgd",
metrics = ["accuracy"l)

@ metric: a “loss function” that is not used for training

> all losses can be metrics, but not all metrics can be losses (e.g.,
accuracy)

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras 13 / 37

Available loss functions & metrics

Mean squared error, mean absolute error
@ binary crossentropy (for sigmoid, expects vectors of zeros and ones)
» eg., Y=[[0,1,0],[1,1,1]]
@ categorical crossentropy (for softmax, expects one-hot vectors)
» e.g., Y=[[0,0,1],[1,0,0]] (one-hot)
@ sparse categorical crossentropy (for softmax, expects indices)
> eg. Y= [[2],[0]] (sparse)
cosine proximity
KL divergence
accuracy (as metric only)

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras 14 / 37

DIY losses & metrics

def myloss(y_true, y_pred):

loss = # do something with y_true, y_pred
return loss

model.compile(loss=myloss, optimizer = "sgd")

as metric:
model.compile(loss="mean_squared_error", optimizer = "sgd", metrics = [myloss])

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras

Optimizers

@ Available optimizers: SGD, Adam, RMSProp...

model.compile(loss = "categorical_crossentropy", optimizer
model.compile(loss = "categorical_crossentropy", optimizer

or customize your optimizer:

from keras.optimizers import SGD

customsgd = SGD(lr = 0.006, momentum = True)
model.compile(loss = "categorical_crossentropy", optimizer

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras

n Sgd")
"adam")

customsgd)

16 / 37

Training

fit receives numpy tensors X and Y
Their shape must match expected input and output shapes

fit returns history object with losses/metrics over epochs

By default, fit shuffles the training data

print (model.input_shape)

(None, None) # (batchsize, timesteps). None means that any size > 0 is okay.
print (model.output_shape)

(None, 50) # (batchsize, timesteps, output_dim)

X, Y = # load_training_data()

print (X.shape)

(20, 30)

print (Y.shape)

(20, 50)

history = model.fit(X, Y, epochs = 5, shuffle = True)
print (history.history["loss"])

[0.317502856254577637, 0.26498502135276794, ...]

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras 18 / 37

Evaluation

X, Y = # load_dev_data()

results = model.evaluate(X, Y)

for name, number in zip(model.metrics_names, results):
print (name, number)

loss 0.29085057973861694
acc 0.7510684013366699

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras

Validation during training

X_train, Y_train = # load_train_data()

X_dev, Y_dev = # load_dev_data()

history = model.fit(X_train, Y_train, epochs = 5,
validation_data = (X_dev, Y_dev))

wvalidation loss history in history.history["val_loss"]

#or use 10/ of X_train, Y_train as validation set
history = model.fit(X_train, Y_train, epochs = 5, validation_split = 0.1)

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras

Callbacks

@ EarlyStopping: Stop training when a loss/metric stops improving
@ ModelCheckpoint: Save model at regular intervals

@ ReduceLROnPlateau: Reduce learning rate when loss stops improving

from keras.callbacks import EarlyStopping, ModelCheckpoint

earlystop = EarlyStopping(monitor = "val_acc", patience = 5)
stop training if walidation accuracy did nmot improve for 5 epochs

checkpoint = ModelCheckpoint("./mymodel.h5",
save_best_only = True, monitor = "val_acc")

save model after epochs with improved walidation accuracy improves

model.fit(X, Y, validation_split = 0.1, epochs = 100000,
callbacks = [earlystop, checkpoint])

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras 21 /37

Keras: functional API

Layers in Sequential can have only one input, one output

Functional API generalizes to multiple in-/outputs

o
o
o Class Input: placeholder for input data, needs to know its own shape
@ “Split” information flow by passing one tensor to multiple layers

o

“Merge" information flow with merge functions:
» concatenate, add, dot...

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras 23 /37

Keras: functional APl — examples

@ Example: Two outputs

» Use a single LSTM with two different loss functions
> e.g., to predict topic (1-of-N) and sentiment polarity (binary)

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras 24 / 37

Keras: functional APl — example

from keras.layers import Input, Embedding, LSTM, Dense, concatenate
from keras.models import Model

embedding_layer, lstm_layer = # Embedding(...), LSTM(...)
i_sentence = Input(input_shape = (None,))

embedded = embedding_layer (i_sentence) # call layer like a function
h_T = lstm_layer(embedded)

softmax_layer = Dense(units = 20, activation = "softmax")
sigmoid_layer = Dense(units 1, activation = "sigmoid")

o_polarity = sigmoid_layer(h_T)
o_topic = softmax_layer(h_T)
model = Model(inputs = [i_sentence], outputs = [o_polarity, o_topic])

model.compile(optimizer = "sgd",
loss = ["binary_crossentropy", "categorical_crossentropy"])
order in model outputs and loss must match!

X, Y_sigmoid, Y_softmax = # load_training_data()
model.fit(x=X, y=[Y_sigmoid, Y_softmax])

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras 25 / 37

Keras: functional APl — example

e Two inputs:
» Encode sentences A and B with LSTMs, then predict if A entails B

embeddings
LSTMs
concat
%
b
h7

multi-layer perceptron

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras 26 / 37

Keras: functional APl — example

from keras.layers import Input, Embedding, LSTM, Dense, concatenate
from keras.models import Model

embedding_layer_for_A, lstm_layer_for_A
embedding_layer_for_B, lstm_layer_for_B

Embedding(...), LSTM(...)
Embedding(...), LSTM(...)

i_A = Input(input_shape = (None,)) # None: Sentence length can wvary
i_B = Input(input_shape = (None,))

h_a_T = 1stm_layer_for_A(embedding_layer_for_A(i_sentence_A))

h_b_T = lstm_layer_for_B(embedding_layer_for_B(i_sentence_B))
concat = concatenate([h_a_T, h_b_T]) # merge by concatenation
hidden_layer = Dense(units = 200, activation = "relu")
output_layer = Dense(units = 1, activation = "sigmoid")

o_entailment = output_layer(hidden_layer(concat))
model = Model(inputs = [i_sentence_A, i_sentence_B], outputs = [o_entailment])

model.compile(loss = "binary_crossentropy", optimizer = "sgd")
X_A, X B, Y = # load_training_data()

model.fit(x=[X_A, X_Bl, y=Y)

order in xz, and model inputs must match!

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras 27 / 37

DIY layers

o If the model has no weights and does something simple: Lambda layer
@ Implement custom function using the backend

@ If custom function changes the tensor’s size, implement a shape
change function

o Backend documentation: https://keras.io/backend/
import keras.backend as K
from keras.layers import Lambda
def myfunction(x):
"4 function that returns x concatenated with z¥x*x2"""
x_squared = K.square(x)

return K.concatenate([x, x_squared], axis = -1)

def myfunction_shape(shape):
return shapel[:-1] + (shape[-1]1%2,) # last dimension doubles in size

layer = Lambda(myfunction, output_shape = myfunction_shape)

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras 29 / 37

DIY layers

o Custom layers must inherit from Layer
@ Reimplement call() and build()

o If the output has a different shape from the input, reimplement

compute_output_shape

from keras.layers import Layer
from keras.initializers import Ones

class ScalarLayer(Layer):

"""A layer that scales input by a trainable scalar"""

def build(self, input_shape):
self.scalar = self.add_weight(shape = (1,),
name = "scalar",
initializer = Ones())
def call(self, inputs):
return inputs * self.scalar[0]

layer = ScalarLayer (input_shape = (None,))

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras

30 /37

Why masking?

@ Frequent problem: sentences of varying length

@ To combine many sentences into a matrix, we must trim long
sentences or pad short ones

@ pad_sequences preprocessing function: pad shorter sentences with
zeros at the beginning or end

@ Problem 1: RNN may forget information while reading long sequence
of zeros

@ Problem 2: Label padding is trivial to predict — overestimated
performance!

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras 32 /37

Masking

@ Mask: Tensor of ones and zeros that accompanies an input
@ 1: time step is valid
@ 0: time step is masked
this s a long sentence
1 1 1 1 1
short sentence pad pad pad
1 1 0 0 0
@ RNN states skip masked inputs
@ Masked outputs are ignored by loss/metric

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras 33 /37

Masking

embedding_layer = Embedding(input_dim = VOCAB_SIZE,
output_dim = EMBEDDING_SIZE, mask_zero = True)
output of embedding_layer is masked for timesteps where z=0

or:
masking_layer = Masking(9)
output of masking_layer is masked for timesteps where z=9

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras

Why generators?

@ Previously:

» Collect all training data in variables X, Y
» Call model.fit (X, Y)

o What if X, Y don't fit into memory?

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras 36 / 37

def data_generator():
while True:
x_batch, y_batch = # read data batch from disk
yield(x_batch, y_batch)

steps = # calculate number of batches to expect per epoch
model.fit_generator(data_generator(), steps_per_epoch = steps)

o Similar: evaluate generator, predict_generator

@ Validation data can be generator or tuple of arrays

@ Caveat: Shuffling must be done by generator

Nina Poerner, Dr. Benjamin Roth (CIS LMU Introduction to Keras 37 /37

	Introduction
	The Sequential Model
	Compiling
	Training, Evaluation, Validation
	Advanced: Functional API
	Advanced: DIY layers & the Backend
	Advanced: Masking
	Advanced: Data generators

