Word Embeddings

Benjamin Roth, Nina Poerner

Centrum für Informations- und Sprachverarbeitung
Ludwig-Maximilian-Universität München
beroth@cis.uni-muenchen.de

$$
\text { January 8, } 2020
$$

Motivation

- How to represent words in a neural network?
- Possible solution: indicator vectors of length $|V|$ (vocabulary size).

$$
\mathbf{w}^{(\text {the })}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right] \quad \mathbf{w}^{(\text {cat })}=\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots
\end{array}\right] \mathbf{w}^{(\mathrm{dog})}=\left[\begin{array}{c}
0 \\
0 \\
1 \\
\vdots
\end{array}\right]
$$

- Question: Why is this a bad idea?
- Parameter explosion ($|V|$ might be $>1 M$)
- All word vectors are orthogonal to each other \rightarrow no notion of word similarity

Motivation

- Learn one word vector $\mathbf{w}^{(i)} \in \mathbb{R}^{D}$ ("word embedding") per word i
- Typical dimensionality: $50 \leq D \leq 1000 \ll|V|$
- Embedding matrix: $\mathbf{W} \in \mathbb{R}^{|V| \times D}$
- Question: Advantages of using word vectors?
- We can express similarities between words, e.g., with cosine similarity:

$$
\cos \left(\mathbf{w}^{(i)}, \mathbf{w}^{(j)}\right)=\frac{\mathbf{w}^{(i) T} \mathbf{w}^{(j)}}{\left\|\mathbf{w}^{(i)}\right\|_{2} \cdot\left\|\mathbf{w}^{(j)}\right\|_{2}}
$$

- Since the embedding operation is a lookup operation, we only need to update the vectors that occur in a given training batch

Motivation

- Training from scratch: Initialize embedding matrix randomly and learn it during training phase
- \rightarrow words that play similar roles w.r.t. task get similar embeddings
- e.g., from sentiment classification, we might expect $\mathbf{w}^{\text {(great) }} \approx \mathbf{w}^{\text {(awesome) }}$
- Question: What could be a problem at test time?
- If training set is small, many words are unseen during training and therefore have random vectors
- We typically have more unlabelled than labelled data. Can we learn embeddings from the unlabelled data?

Motivation

- Distributional hypothesis: "a word is characterized by the company it keeps" ' (Firth, 1957)
- Basic idea: learn similar vectors for words that occur in similar contexts
- GloVe, Word2Vec, FastText

Questions?

Recap: Language Models

- Question: What is a Language Model?
- Function to assign probability to a sequence of words.
- Question: What is an n-gram language Model?
- Markov assumption: probability of word only depends on no more than $n-1$ other (previous) words:

$$
P\left(w_{[1]} \ldots w_{[T]}\right)=\prod_{t=1}^{T} P\left(w_{[t]} \mid w_{[t-1]} \cdots w_{[t-n+1]}\right)
$$

Word2Vec as a Bigram Language Model

- Words in our vocabulary are represented as two sets of vectors:
- $\mathbf{w}^{(i)} \in \mathbb{R}^{D}$ if they are to be predicted
- $\mathbf{v}^{(i)} \in \mathbb{R}^{D}$ if they are conditioned on as context
- Predict word i given previous word j :

$$
P(i \mid j)=f\left(\mathbf{w}^{(i)}, \mathbf{v}^{(j)}\right)
$$

- Question: What is a possible function $f(\cdot)$?

A Simple Neural Network Bigram Language Model

- Softmax!

$$
P(i \mid j)=\frac{\exp \left(\mathbf{w}^{(i) T} \mathbf{v}^{(j)}\right)}{\sum_{k=1}^{|V|} \exp \left(\mathbf{w}^{(k) T} \mathbf{v}^{(j)}\right)}
$$

- Question: Problem with training softmax?
- \Rightarrow Slow. Needs to compute dot products with the whole vocabulary for every single prediction.

Questions?

Speeding up Training: Hierarchical Softmax

- Context vectors v are defined like before.
- Word vectors \mathbf{w} are replaced by a binary tree:

Hierarchical Softmax

- Each tree node I has parameter vector $\boldsymbol{\theta}^{(I)}$
- Probability of going left at node I given context word j : $p($ left $\mid I, j)=\sigma\left(\boldsymbol{\theta}^{(I)^{T}} \mathbf{v}^{(j)}\right)$
- Probability of going right: $p($ right $\mid I, j)=1-p($ left $\mid I, j)$
- Probability of word i given j : product of probabilities on the path from root to i

Example

Calculate p (sat|cat).

$$
1-\sigma\left(\boldsymbol{\theta}^{(2)^{T}} \mathbf{v}^{(\mathrm{cat})}\right)
$$

Questions

- Question: How many dot products do we need to calculate to get to $p(i \mid j)$? How does this compare to the naive softmax?
- $\log _{2}|V| \ll|V|$
- Question: Show that $\sum_{i^{\prime}} p\left(i^{\prime} \mid j\right)$ sums to 1 .

Questions?

Speeding up Training: Negative Sampling

- Another trick: negative sampling (aka noise contrastive estimation)
- This changes the objective function, and the resulting model is not a language model anymore!
- Idea: Instead of predicting probability distribution over whole vocabulary, make binary decisions for a small number of words.
- Positive training set: Bigrams seen in the corpus.
- Negative training set: Random bigrams (not seen in the corpus).

Negative Sampling: Likelihood

- Given:
- Positive training set: $\operatorname{pos}(\mathcal{O})$
- Negative training set: $\operatorname{neg}(\mathcal{O})$

$$
L=\prod_{(i, j) \in \operatorname{pos}(\mathcal{O})} P\left(\operatorname{pos} \mid \mathbf{w}^{(i)}, \mathbf{v}^{(j)}\right) \prod_{\left(i^{\prime}, j^{\prime}\right) \in \operatorname{neg}(\mathcal{O})} P\left(\operatorname{neg} \mid \mathbf{w}^{\left(i^{\prime}\right)}, \mathbf{v}^{\left(j^{\prime}\right)}\right)
$$

- $P(\operatorname{pos} \mid \mathbf{w}, \mathbf{v})=\sigma\left(\mathbf{w}^{T} \mathbf{v}\right)$
- $P(\operatorname{neg} \mid \mathbf{w}, \mathbf{v})=1-P(\operatorname{pos} \mid \mathbf{w}, \mathbf{v})$
- Question: Why not just maximize $\prod_{(i, j) \in \operatorname{pos}(\mathcal{O})} P\left(\operatorname{pos} \mid \mathbf{w}^{(i)}, \mathbf{v}^{(j)}\right)$?
- Trivial solution: make all \mathbf{w}, \mathbf{v} identical

Word2Vec with negative sampling as classification

- Maximize likelihood of training data:

$$
\mathcal{L}(\theta)=\prod_{i} P\left(y^{(i)} \mid x^{(i)} ; \theta\right)
$$

- \Leftrightarrow minimize negative log likelihood:

$$
\left.N L L(\theta)=-\log \mathcal{L}(\theta)=-\sum_{i} \log P\left(y^{(i)} \mid x^{(i)} ; \theta\right)\right)
$$

- Question: What do these components stand for in Word2Vec with negative sampling?
- $x^{(i)}$ Word pair, from corpus OR randomly created
- $y^{(i)}$ Label: $1=$ word pair is from positive training set, $0=$ word pair is from negative training set
- θ Parameters v, w
- $P(\ldots)$ Logistic sigmoid: $P(1 \mid \cdot)=\sigma\left(\mathbf{w}^{T} \mathbf{v}\right)$, resp. $P(0 \mid \cdot)=1-\sigma\left(\mathbf{w}^{T} \mathbf{v}\right)$.

Stochastic Gradient Descent

$$
\frac{d \sigma(x)}{d x}=\sigma(x)(1-\sigma(x)) \quad \frac{d \log (x)}{d x}=\frac{1}{x}
$$

$$
\begin{aligned}
& L(\mathbf{w}, \mathbf{v}, y)=-y \log \left(\sigma\left(\mathbf{w}^{\top} \mathbf{v}\right)\right)-(1-y) \log \left(1-\sigma\left(\mathbf{w}^{\top} \mathbf{v}\right)\right) \\
& \frac{\partial L}{\partial \mathbf{w}}=
\end{aligned}
$$

$$
\begin{aligned}
& -y \frac{1}{\sigma\left(\mathbf{w}^{\top} \mathbf{v}\right)} \sigma\left(\mathbf{w}^{\top} \mathbf{v}\right)\left(1-\sigma\left(\mathbf{w}^{\top} \mathbf{v}\right)\right) \mathbf{v} \\
& -(1-y) \frac{1}{1-\sigma\left(\mathbf{w}^{\top} \mathbf{v}\right)}(-1) \sigma\left(\mathbf{w}^{\top} \mathbf{v}\right)\left(1-\sigma\left(\mathbf{w}^{\top} \mathbf{v}\right)\right) \mathbf{v} \\
= & \left(\sigma\left(\mathbf{w}^{\top} \mathbf{v}\right)-y\right) \mathbf{v}
\end{aligned}
$$

Same for \mathbf{v} :

$$
\frac{\partial L}{\partial \mathbf{v}}=\left(\sigma\left(\mathbf{w}^{T} \mathbf{v}\right)-y\right) \mathbf{w}
$$

Stochastic Gradient Descent

- One update step for one word pair i, j :

$$
\begin{aligned}
& \mathbf{w}_{\text {updated }} \leftarrow \mathbf{w}-\eta\left(\sigma\left(\mathbf{w}^{T} \mathbf{v}\right)-y\right) \mathbf{v} \\
& \mathbf{v}_{\text {updated }} \leftarrow \mathbf{v}-\eta\left(\sigma\left(\mathbf{w}^{T} \mathbf{v}\right)-y\right) \mathbf{w}
\end{aligned}
$$

- $\eta>0$ is learning rate, y is label $\in\{0,1\}$.
- When do the vectors of a pair become more/less similar, and why?
- Let $a=-\eta\left(\sigma\left(\mathbf{w}^{T} \mathbf{v}\right)-y\right)$
- Positive (observed) word pair: $y=1 \Longrightarrow a>0$.
$\star a \mathbf{v}$ is added to \mathbf{w} and vice versa \rightarrow more similar.
- Negative (random) word pair: $y=0 \Longrightarrow a<0$.
$\star a \mathbf{v}$ is subtracted from \mathbf{w} and vice versa \rightarrow less similar.

Absolute difference of y and $\sigma\left(\mathbf{w}^{T} \mathbf{v}\right)$

Speeding up Training: Negative Sampling

- Constructing a good negative training set can be difficult
- Often it is some random perturbation of the training data (e.g. replacing the second word of each bigram by a random word).
- The number of negative samples is often a multiple ($1 \times$ to $20 x$) of the number of posisive samples
- Negative sets are often constructed per batch

Questions

- Question: How many dot products do we need to calculate for a given word pair? How does this compare to the naive and hierarchical softmax?
- $M+1 \approx \log _{2}|V| \ll|V|$
- (for $M=20,|V|=1,000,000)$

Questions?

Skip-gram (Word2Vec)

- Idea: Learn many bigram language models at the same time.
- Given word $w_{[t]}$, predict words inside a window around $w_{[t]}$:
- One position before the target word:

$$
p\left(w_{[t-1]} \mid w_{[t]}\right)
$$

- One position after the target word:

$$
p\left(w_{[t+1]} \mid w_{[t]}\right)
$$

- Two positions before the target word:

$$
p\left(w_{[t-2]} \mid w_{[t]}\right)
$$

- ... up to a specified window size c.
- Models share all w, v parameters!

Skip-gram: Objective

- Optimize the joint likelihood of the $2 c$ language models:

$$
p\left(w_{[t-c]} \ldots w_{[t-1]} w_{[t+1]} \ldots w_{[t+c]} \mid w_{[t]}\right)=\prod_{\substack{i \in\left\{\begin{array}{c}
-c \ldots c\} \\
i \neq 0 \\
\hline
\end{array}\right.}} p\left(w_{[t+i]} \mid w_{[t]}\right)
$$

- Negative Log-likelihood for whole corpus (of size N):

$$
N L L=-\sum_{t=1}^{N} \sum_{\substack{i \in\{-c . . c\} \\ i \neq 0}} \log p\left(w_{[t+i]} \mid w_{[t]}\right)
$$

- Using negative sampling as approximation:

$$
\approx-\sum_{t=1}^{N} \sum_{\substack{i \in\{-c \ldots c\} \\ i \neq 0}}\left[\log \sigma\left(\mathbf{w}_{[t+i]}^{T} \mathbf{v}_{[t]}\right)+\sum_{m=1}^{M} \log \left[1-\sigma\left(\mathbf{w}^{(*)^{T}} \mathbf{v}_{[t]}\right)\right]\right]
$$

- $\mathbf{w}^{(*)}$ is the word vector of a random word, M is the number of negatives per positive sample

C (ontinuous) $\mathrm{B}(\mathrm{ag}) \mathrm{o}(\mathrm{f}) \mathrm{W}($ ords $)$

- Like Skipgram, but...
- Predict word $w_{[t]}$, given the words inside the window around $w_{[t]}$:

$$
\begin{gathered}
p\left(w_{[t]} \mid w_{[t-c]} \cdots w_{[t-1]} w_{[t+1]} \cdots w_{[t+c]}\right) \\
\propto \mathbf{w}_{[t]}^{T} \sum_{\substack{i \in-c \ldots c \\
i \neq 0}} \mathbf{v}_{[t+i]}
\end{gathered}
$$

> .$/$ word2vec -train data.txt -output vec.txt -window 5 -negative 20 -hs 0 -cbow 1

Questions?

FastText

- Even if we train Word2Vec on a very large corpus, we will still encounter unknown words at test time
- Orthography can often help us:
- $\mathbf{w}^{\text {(remuneration) }}$ should be similar to
- $\mathbf{w}^{\text {(remunerate) }}$ (same stem)
- $\mathbf{w}^{(\text {literation })}, \mathbf{w}^{\text {(consideration) }} \ldots$ (same suffix \approx same POS)

FastText

$$
\begin{aligned}
& \text { known word: } \mathbf{w}^{(i)}=\frac{1}{|\operatorname{ngrams}(i)|+1}\left[\mathbf{u}^{(i)}+\sum_{n \in \operatorname{ngrams}(i)} \mathbf{u}^{(n)}\right] \\
& \text { unknown word: } \mathbf{w}^{(i)}=\frac{1}{|\operatorname{ngrams}(i)|} \sum_{n \in \operatorname{ngrams}(i)} \mathbf{u}^{(n)} \\
& \text { ngrams(remuneration })=\{\$ r e, \text { rem }, \$ r e m, \ldots \text { ration, ation } \$\}
\end{aligned}
$$

FastText: Training

- ngrams typically contains 3 - to 6 -grams
- Replace w in Skipgram objective with its new definition
- During backpropagation, loss gradient vector $\frac{\partial J}{\partial \mathbf{w}^{(i)}}$ is distributed to word vector $\mathbf{u}^{(i)}$ and associated n-gram vectors $\mathbf{u}^{(n)}$

Summary

- Word2Vec as a bigram Language Model
- Hierarchical Softmax
- Negative Sampling
- Skipgram: Predict words in window given word in the middle
- CBOW: Predict word in the middle given words in window
- fastText: N -gram embeddings generalize to unseen words
- Any questions?

Initializing neural networks with pretrained embeddings

- Knowledge transfer from unlabelled corpus
- Design choice: Fine-tune embeddings on task or freeze them?
- Pro: Can learn/strengthen features that are important for task
- Contra: Training vocabulary is small subset of entire vocabulary \rightarrow we might overfit and mess up topology w.r.t. unseen words

```
pretrained = #load_some_embeddings()
frozen = Embedding(input_dim = pretrained.shape[0],
    output_dim = pretrained.shape[1],
    weights = [pretrained],
    trainable = False)
finetunable = Embedding(input_dim = pretrained.shape[0],
    output_dim = pretrained.shape[1],
    weights = [pretrained],
    trainable = True)
(keras)
```


Initializing neural networks with pretrained embeddings

Model	MR	SST-1	SST-2	Subj	TREC	CR	MPQA	
CNN-rand	(randomly initialized)	76.1	45.0	82.7	89.6	91.2	79.8	83.4
CNN-static	(pretrained+frozen)	81.0	45.5	86.8	93.0	92.8	84.7	$\mathbf{8 9 . 6}$
CNN-non-static	(pretrained+fine-tuned)	$\mathbf{8 1 . 5}$	48.0	87.2	93.4	93.6	84.3	89.5
CNN-multichannel (combination)	81.1	47.4	$\mathbf{8 8 . 1}$	93.2	92.2	$\mathbf{8 5 . 0}$	89.4	

Table from Kim 2014: Convolutional Neural Networks for Sentence Classification.

Resources

- https://fasttext.cc/docs/en/crawl-vectors.html
- Embeddings for 157 languages, trained on big web crawls, up to 2M words per language
- https://nlp.stanford.edu/projects/glove/
- GloVe word vectors: Cooccurrence-count objective, not n-gram based

Analogy mining

country-capital

$$
\mathbf{w}^{(\text {Tokio })}-\mathbf{w}^{(\text {Japan })}+\mathbf{w}^{(\text {Poland })} \approx \mathbf{w}^{(\text {Warsaw })}
$$

opposite

$$
\mathbf{w}^{(\text {unacceptable })}-\mathbf{w}^{(\text {acceptable })}+\mathbf{w}^{(\text {logical })} \approx \mathbf{w}^{(\text {illogical })}
$$

Nationality-adjective

$$
\mathbf{w}^{(\text {Australian })}-\mathbf{w}^{(\text {Australia })}+\mathbf{w}^{(\text {Switzerland })} \approx \mathbf{w}^{(\text {Swiss })}
$$

Analogy mining

Country and Capital Vectors Projected by PCA

$$
\mathbf{w}^{(a)}-\mathbf{w}^{(b)}+\mathbf{w}^{(c)}=\mathbf{w}^{(?)}
$$

$$
\mathbf{w}^{(d)}=\underset{\mathbf{w}^{\left(d^{\prime}\right)} \in \mathbf{W}}{\operatorname{argmax}} \quad \cos \left(\mathbf{w}^{(?)}, \mathbf{w}^{\left(d^{\prime}\right)}\right)
$$

Table 8: Examples of the word pair relationships, using the best word vectors from Table 母(Skipgram model trained on 783 M words with 300 dimensionality).

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

Cross-lingual Embedding Spaces: A very short overview

- Embedding space: The space defined by the embeddings of all words in a language
- Hypothesis: Embedding spaces of different languages have similar structures

Mikolov et al. 2013: Exploiting Similarities among Languages for Machine Translation

Cross-lingual Embedding Spaces: A very short overview

- Given:
- Monolingual embedding spaces of two languages: $\mathbf{W}_{L 1}, \mathbf{W}_{L 2}$
- Dictionary D of a few known translations
- Learn function f, s.t.

$$
\forall_{(i, j) \in D} f\left(\mathbf{w}_{L 1}^{(i)}\right) \approx \mathbf{w}_{L 2}^{(j)}
$$

- e.g., linear transformation: $f\left(\mathbf{w}_{L 1}\right)=\mathbf{V} \mathbf{w}_{L 1}$
- Given word k in L1 with unknown translation:
- translate as L2 word I whose embedding $\mathbf{w}_{L 2}^{(I)}$ minimizes cosine distance to $f\left(\mathbf{w}_{L 1}^{(k)}\right)$
- Used as initialization for unsupervised Machine Translation

Summary

- Applications of Word Embeddings:
- Word vector initialization in neural networks
- Analogy mining
- Word translation mining
- Any questions?

